executor.cc 18.9 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/executor.h"
#include <deque>
#include <memory>
#include <unordered_map>
#include <unordered_set>
#include <utility>
#include "google/protobuf/io/zero_copy_stream_impl.h"
#include "google/protobuf/message.h"
#include "google/protobuf/text_format.h"
#include "paddle/fluid/framework/feed_fetch_method.h"
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor_array.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/trainer_desc.pb.h"
#include "paddle/fluid/framework/trainer_factory.h"
#include "paddle/fluid/framework/transfer_scope_cache.h"
#include "paddle/fluid/framework/variable_helper.h"
33
#include "paddle/fluid/operators/controlflow/conditional_block_op_helper.h"
X
xiexionghang 已提交
34 35 36 37 38 39 40 41 42 43 44 45
#include "paddle/fluid/operators/controlflow/recurrent_op_helper.h"
#include "paddle/fluid/operators/controlflow/while_op_helper.h"
#include "paddle/fluid/operators/distributed/distributed.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"

#ifdef PADDLE_WITH_NGRAPH
#include "paddle/fluid/operators/ngraph/ngraph_engine.h"
#endif

DECLARE_bool(benchmark);
DEFINE_bool(use_mkldnn, false, "Use MKLDNN to run");
46
DEFINE_bool(use_ngraph, false, "Use NGRAPH to run");
X
xiexionghang 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

namespace paddle {
namespace framework {
namespace {
// block id starts from 0. This id is used to represent the codeblock
// wrapping the first block 0.
int kProgramId = -1;
}  // namespace

ExecutorPrepareContext::ExecutorPrepareContext(
    const framework::ProgramDesc& prog, size_t block_id)
    : prog_(prog), block_id_(block_id) {}

void ExecutorPrepareContext::PrepareUnusedVars(
    const std::vector<std::string>& keep_vars, bool force_disable_gc) {
62 63 64 65 66 67 68 69 70 71 72
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph) {
    // FIXME(zjl): There is difference when ngraph and gc are both enabled
    // in unittests. I do not know why it happens. Maybe ngraph engine
    // would cache some variables?
    LOG_FIRST_N(WARNING, 1)
        << "FLAGS_use_ngraph=True, garbage collection strategy is "
           "disabled in Executor";
    force_disable_gc = true;
  }
#endif
X
xiexionghang 已提交
73 74 75 76
  force_disable_gc_ = force_disable_gc;
  if (GetEagerDeletionThreshold() < 0 || force_disable_gc_) {
    return;
  }
77 78 79 80 81 82 83 84 85 86

  // If gc is enabled and block size > 1
  if (prog_.Size() > 1) {
    operators::PrepareSafeEagerDeletionOnConditionalOpAndConditionalGradOp(
        prog_, block_id_, ops_);
    operators::PrepareSafeEagerDeletionOnWhileOpAndWhileGradOp(prog_, block_id_,
                                                               ops_);
    operators::PrepareSafeEagerDeletionOnRecurrentOpAndRecurrentGradOp(
        prog_, block_id_, ops_);
  }
X
xiexionghang 已提交
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
  unused_vars_ = GetUnusedVars(prog_.Block(block_id_), ops_, keep_vars);
}

ExecutorPrepareContext::~ExecutorPrepareContext() {
  VLOG(5) << "destroy ExecutorPrepareContext";
}

Executor::Executor(const platform::Place& place) : place_(place) {}

void Executor::Close() {
#ifdef PADDLE_WITH_DISTRIBUTE
  // TODO(typhoonzero): complete message will need to use real trainer_id,
  // except 0.
  auto client =
      paddle::operators::distributed::RPCClient::GetInstance<RPCCLIENT_T>(0);
  client->SendComplete();
#endif
}

void Executor::CreateVariables(const ProgramDesc& pdesc, Scope* scope,
                               int block_id) {
  auto& global_block = pdesc.Block(block_id);

  const Scope* ancestor_scope = scope;
  while (ancestor_scope->parent()) {
    ancestor_scope = ancestor_scope->parent();
  }

  if (ancestor_scope != scope) {
    for (auto& var : global_block.AllVars()) {
      if (var->Name() == framework::kEmptyVarName) {
        continue;
      }

      if (var->Persistable()) {
        auto* ptr = const_cast<Scope*>(ancestor_scope)->Var(var->Name());
        InitializeVariable(ptr, var->GetType());
        VLOG(3) << "Create Variable " << var->Name()
                << " global, which pointer is " << ptr;
      } else {
        auto* ptr = scope->Var(var->Name());
        InitializeVariable(ptr, var->GetType());
        VLOG(3) << "Create Variable " << var->Name()
                << " locally, which pointer is " << ptr;
      }
    }
  } else {
    for (auto& var : global_block.AllVars()) {
      auto* ptr = scope->Var(var->Name());
      InitializeVariable(ptr, var->GetType());
      VLOG(3) << "Create variable " << var->Name() << ", which pointer is "
              << ptr;
    }
  }
}

void Executor::RunFromDataset(const ProgramDesc& main_program, Scope* scope,
                              Dataset* dataset,
                              const std::string& trainer_desc_str) {
  VLOG(3) << "Start to RunFromDataset in executor";
  TrainerDesc trainer_desc;
  bool success = trainer_desc.ParseFromString(trainer_desc_str);
  PADDLE_ENFORCE(success, "Fail to parse TrainerDesc from string:\n%s",
                 trainer_desc_str.c_str());
  VLOG(3) << "Going to create trainer, trainer class is "
          << trainer_desc.class_name();
  std::shared_ptr<TrainerBase> trainer;
  trainer = TrainerFactory::CreateTrainer(trainer_desc.class_name());
  // initialize trainer
  VLOG(3) << "Going to initialize trainer";
  trainer->Initialize(trainer_desc, dataset);
  VLOG(3) << "Set root scope here";
  trainer->SetScope(scope);
  // prepare training environment and helper environment
  VLOG(3) << "Try to init train environment";
  trainer->InitTrainerEnv(main_program, place_);
  VLOG(3) << "Try to init other environment";
  trainer->InitOtherEnv(main_program);
  // training and finalize training
  VLOG(3) << "Trainer starts to run";
  trainer->Run();
  VLOG(3) << "Trainer going to finalize";
  trainer->Finalize();
  return;
}

void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id,
                   bool create_local_scope, bool create_vars,
                   const std::vector<std::string>& skip_ref_cnt_vars,
                   bool force_disable_gc) {
  platform::RecordBlock b(block_id);
  if (FLAGS_use_mkldnn) EnableMKLDNN(pdesc);
  auto ctx = Prepare(pdesc, block_id, skip_ref_cnt_vars, force_disable_gc);
  RunPreparedContext(ctx.get(), scope, create_local_scope, create_vars);
}

// Check whether the block already has feed operators and feed_holder.
// Return false if the block does not have any feed operators.
// If some feed operators have been prepended to the block, check that
// the info contained in these feed operators matches the feed_targets
// and feed_holder_name. Raise exception when any mismatch is found.
// Return true if the block has feed operators and holder of matching info.
static bool has_feed_operators(
    const BlockDesc& block,
    const std::map<std::string, const LoDTensor*>& feed_targets,
    const std::string& feed_holder_name) {
  size_t feed_count = 0;
  for (auto* op : block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      feed_count++;
      // The input variable's name of feed_op should be feed_holder_name.
      PADDLE_ENFORCE_EQ(op->Input("X")[0], feed_holder_name,
                        "Input to feed op should be '%s'", feed_holder_name);
      std::string feed_target_name = op->Output("Out")[0];
      PADDLE_ENFORCE(
          feed_targets.find(feed_target_name) != feed_targets.end(),
          "Feed operator output name '%s' cannot be found in 'feed_targets'",
          feed_target_name);
    }
  }

  if (feed_count > 0) {
    PADDLE_ENFORCE_EQ(
        feed_count, feed_targets.size(),
        "The number of feed operators should match 'feed_targets'");

    if (!feed_holder_name.empty()) {
      // When feed operator are present, so should be feed_holder.
      auto var = block.FindVar(feed_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              feed_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FEED_MINIBATCH,
                        "'%s' variable should be 'FEED_MINIBATCH' type",
                        feed_holder_name);
    }
  }

  return feed_count > 0;
}

// Check whether the block already has fetch operators and fetch_holder.
// Return false if the block does not have any fetch operators.
// If some fetch operators have been appended to the block, check that
// the info contained in these fetch operators matches the fetch_targets
// and fetch_holder_name. Raise exception when any mismatch is found.
// Return true if the block has fetch operators and holder of matching info.
static bool has_fetch_operators(
    const BlockDesc& block,
    const std::map<std::string, LoDTensor*>& fetch_targets,
    const std::string& fetch_holder_name) {
  size_t fetch_count = 0;
  for (auto* op : block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      fetch_count++;
      // The output variable's name of fetch_op should be fetch_holder_name.
      PADDLE_ENFORCE_EQ(op->Output("Out")[0], fetch_holder_name,
                        "Output of fetch op should be '%s'", fetch_holder_name);
      std::string fetch_target_name = op->Input("X")[0];
      PADDLE_ENFORCE(
          fetch_targets.find(fetch_target_name) != fetch_targets.end(),
          "Fetch operator input name '%s' cannot be found in 'fetch_targets'",
          fetch_target_name);
    }
  }

  if (fetch_count > 0) {
    PADDLE_ENFORCE_EQ(
        fetch_count, fetch_targets.size(),
        "The number of fetch operators should match 'fetch_targets'");

    if (!fetch_holder_name.empty()) {
      // When fetch operator are present, so should be fetch_holder.
      auto var = block.FindVar(fetch_holder_name);
      PADDLE_ENFORCE_NOT_NULL(var, "Block should already have a '%s' variable",
                              fetch_holder_name);
      PADDLE_ENFORCE_EQ(var->GetType(), proto::VarType::FETCH_LIST,
                        "'%s' variable should be 'FETCH_LIST' type",
                        fetch_holder_name);
    }
  }

  return fetch_count > 0;
}

std::unique_ptr<ExecutorPrepareContext> Executor::PrepareCtxCache(
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
  return Prepare(program, block_id, skip_ref_cnt_vars, force_disable_gc);
}

void Executor::Run(const ProgramDesc& program, Scope* scope,
                   std::map<std::string, const LoDTensor*>* feed_targets,
                   std::map<std::string, LoDTensor*>* fetch_targets,
                   bool create_local_scope, bool create_vars,
                   const std::string& feed_holder_name,
                   const std::string& fetch_holder_name) {
  platform::RecordBlock b(kProgramId);
  if (FLAGS_use_mkldnn) EnableMKLDNN(program);
  bool has_feed_ops =
      has_feed_operators(program.Block(0), *feed_targets, feed_holder_name);
  bool has_fetch_ops =
      has_fetch_operators(program.Block(0), *fetch_targets, fetch_holder_name);

  ProgramDesc* copy_program = const_cast<ProgramDesc*>(&program);
  std::unique_ptr<ProgramDesc> unique_ptr_of_copy_program;
  if (!has_feed_ops || !has_fetch_ops) {
    unique_ptr_of_copy_program.reset(new ProgramDesc(program));
    copy_program = unique_ptr_of_copy_program.get();
  }
  auto* global_block = copy_program->MutableBlock(0);

  if (!has_feed_ops) {
    // create feed_holder variable
    auto* feed_holder = global_block->Var(feed_holder_name);
    feed_holder->SetType(proto::VarType::FEED_MINIBATCH);
    feed_holder->SetPersistable(true);

    int i = 0;
    for (auto& feed_target : (*feed_targets)) {
      std::string var_name = feed_target.first;
      VLOG(3) << "feed target's name: " << var_name;

      // prepend feed op
      auto* op = global_block->PrependOp();
      op->SetType(kFeedOpType);
      op->SetInput("X", {feed_holder_name});
      op->SetOutput("Out", {var_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

  if (!has_fetch_ops) {
    // create fetch_holder variable
    auto* fetch_holder = global_block->Var(fetch_holder_name);
    fetch_holder->SetType(proto::VarType::FETCH_LIST);
    fetch_holder->SetPersistable(true);

    int i = 0;
    for (auto& fetch_target : (*fetch_targets)) {
      std::string var_name = fetch_target.first;
      VLOG(3) << "fetch target's name: " << var_name;

      // append fetch op
      auto* op = global_block->AppendOp();
      op->SetType(kFetchOpType);
      op->SetInput("X", {var_name});
      op->SetOutput("Out", {fetch_holder_name});
      op->SetAttr("col", {static_cast<int>(i)});
      op->CheckAttrs();

      i++;
    }
  }

  auto ctx = Prepare(*copy_program, 0);
  RunPreparedContext(ctx.get(), scope, feed_targets, fetch_targets,
                     create_local_scope, create_vars, feed_holder_name,
                     fetch_holder_name);
}

std::unique_ptr<ExecutorPrepareContext> Executor::Prepare(
    const ProgramDesc& program, int block_id,
    const std::vector<std::string>& skip_ref_cnt_vars, bool force_disable_gc) {
  std::unique_ptr<ExecutorPrepareContext> ctx(
      new ExecutorPrepareContext(program, block_id));
  PADDLE_ENFORCE_LT(static_cast<size_t>(block_id), program.Size());
  auto& block = program.Block(block_id);
  for (auto& op_desc : block.AllOps()) {
    ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
  }
#ifdef PADDLE_WITH_NGRAPH
  if (FLAGS_use_ngraph && ctx->block_id_ == 0) {
    paddle::operators::NgraphEngine::FuseNgraphOps(
        ctx->prog_.Block(ctx->block_id_), &ctx->ops_);
  }
#endif
  ctx->PrepareUnusedVars(skip_ref_cnt_vars, force_disable_gc);
  return ctx;
}

std::vector<std::shared_ptr<ExecutorPrepareContext>> Executor::Prepare(
    const ProgramDesc& program, const std::vector<int>& block_ids,
    const std::vector<std::vector<std::string>>& skip_ref_cnt_vars,
    bool force_disable_gc) {
  PADDLE_ENFORCE(
      skip_ref_cnt_vars.empty() || skip_ref_cnt_vars.size() == block_ids.size(),
      "skip_ref_cnt_vars should be either empty or equals to block number %d",
      block_ids.size());
  std::vector<std::shared_ptr<ExecutorPrepareContext>> result;
  size_t idx = 0;
  for (auto& bid : block_ids) {
    PADDLE_ENFORCE_LT(static_cast<size_t>(bid), program.Size());
    auto* ctx = new ExecutorPrepareContext(program, bid);
    auto& block = program.Block(bid);
    for (auto& op_desc : block.AllOps()) {
      ctx->ops_.push_back(OpRegistry::CreateOp(*op_desc));
    }
    if (skip_ref_cnt_vars.empty()) {
      ctx->PrepareUnusedVars(std::vector<std::string>(), force_disable_gc);
    } else {
      ctx->PrepareUnusedVars(skip_ref_cnt_vars[idx], force_disable_gc);
    }
    result.push_back(std::shared_ptr<ExecutorPrepareContext>(ctx));
    ++idx;
  }
  return result;
}

void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope,
                                  bool create_local_scope, bool create_vars,
                                  bool keep_kids) {
  platform::RecordBlock b(kProgramId);
  PADDLE_ENFORCE_NOT_NULL(scope);
  Scope* local_scope = scope;
  if (create_vars) {
    if (create_local_scope) {
      local_scope = &scope->NewScope();
    }
    CreateVariables(ctx->prog_, local_scope, ctx->block_id_);
  }

  int64_t max_memory_size = GetEagerDeletionThreshold();
  std::unique_ptr<GarbageCollector> gc;
  if (!ctx->force_disable_gc_ && max_memory_size >= 0) {
#ifdef PADDLE_WITH_CUDA
    if (platform::is_gpu_place(place_)) {
      if (IsFastEagerDeletionModeEnabled()) {
        gc.reset(new UnsafeFastGPUGarbageCollector(
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      } else {
        gc.reset(new DefaultStreamGarbageCollector(
            boost::get<platform::CUDAPlace>(place_), max_memory_size));
      }
    } else if (platform::is_cpu_place(place_)) {
#endif
      gc.reset(new CPUGarbageCollector(boost::get<platform::CPUPlace>(place_),
                                       max_memory_size));
#ifdef PADDLE_WITH_CUDA
    }
#endif
  }

  for (auto& op : ctx->ops_) {
    op->Run(*local_scope, place_);
    if (gc) {
      DeleteUnusedTensors(*local_scope, op.get(), ctx->unused_vars_, gc.get());
    }
  }

  platform::DeviceContextPool::Instance().Get(place_)->Wait();

  if (local_scope != scope) {
    scope->DeleteScope(local_scope);
  } else {
    if (!keep_kids) {
      // By default, we should delete all kid scopes after run executor because
      // some operators may create local scope when running, such as while_op.
      // But when while_op also create a local executor to run it's sub block,
      // the sub scopes it created should not be dropped immediately, because
      // while_grad_op will use some variables created during while_op run, so
      // we need to keep the kids and wait for the outer executor to drop them.
      scope->DropKids();
    }
  }
}

void Executor::RunPreparedContext(
    ExecutorPrepareContext* ctx, Scope* scope,
    std::map<std::string, const LoDTensor*>* feed_targets,
    std::map<std::string, LoDTensor*>* fetch_targets, bool create_local_scope,
    bool create_vars, const std::string& feed_holder_name,
    const std::string& fetch_holder_name) {
  auto& global_block = ctx->prog_.Block(ctx->block_id_);

  PADDLE_ENFORCE(
      has_feed_operators(global_block, *feed_targets, feed_holder_name),
      "Program in ExecutorPrepareContext should has feed_ops.");
  PADDLE_ENFORCE(
      has_fetch_operators(global_block, *fetch_targets, fetch_holder_name),
      "Program in the prepared context should has fetch_ops.");

  // map the data of feed_targets to feed_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFeedOpType) {
      std::string feed_target_name = op->Output("Out")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      SetFeedVariable(scope, *(*feed_targets)[feed_target_name],
                      feed_holder_name, idx);
    }
  }

  RunPreparedContext(ctx, scope, create_local_scope, create_vars);

  // obtain the data of fetch_targets from fetch_holder
  for (auto* op : global_block.AllOps()) {
    if (op->Type() == kFetchOpType) {
      std::string fetch_target_name = op->Input("X")[0];
      int idx = boost::get<int>(op->GetAttr("col"));
      *(*fetch_targets)[fetch_target_name] =
          GetFetchVariable(*scope, fetch_holder_name, idx);
    }
  }
}

void Executor::EnableMKLDNN(const ProgramDesc& program) {
#ifdef PADDLE_WITH_MKLDNN
  VLOG(3) << "use_mkldnn=True";
  for (size_t bid = 0; bid < program.Size(); ++bid) {
    auto* block = const_cast<ProgramDesc&>(program).MutableBlock(bid);
    for (auto* op : block->AllOps()) {
      if (op->HasAttr("use_mkldnn")) {
        op->SetAttr("use_mkldnn", true);
      }
    }
  }
#else
  LOG(WARNING)
      << "'MKLDNN' is not supported, Please re-compile with WITH_MKLDNN option";
#endif
}
}  // namespace framework
}  // namespace paddle