reduce_op_handle.cc 12.7 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include <memory>
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/reduce_and_gather.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#if defined PADDLE_WITH_CUDA && defined PADDLE_WITH_DISTRIBUTE
#include "paddle/fluid/operators/distributed/collective_client.h"
#include "paddle/fluid/operators/distributed/collective_server.h"
#include "paddle/fluid/operators/distributed/request_handler.h"
#endif
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/profiler.h"

DEFINE_bool(
    cpu_deterministic, false,
    "Whether to make the result of computation deterministic in CPU side.");

namespace paddle {
namespace framework {
namespace details {

std::once_flag CollectiveContext::init_flag_;
std::unique_ptr<CollectiveContext> CollectiveContext::context_;

static inline std::string GetRemoteVarName(const std::string &var_name,
                                           int trainer_id) {
  return string::Sprintf("%s_merged_tmp@trainer_%d", var_name, trainer_id);
}

void ReduceOpHandle::Wait(
    const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes) {
  // TODO(gongwb): use event wait?
  for (auto &dev_ctx : dev_ctxes) {
    dev_ctx.second->Wait();
  }
}

#if defined PADDLE_WITH_CUDA && defined PADDLE_WITH_DISTRIBUTE
template <typename DevCtx, typename DataType>
void ReduceOpHandle::GatherSelectedRows(
    const std::vector<const SelectedRows *> &src_selected_rows,
    const std::vector<platform::Place> &in_places,
    const std::map<platform::Place, platform::DeviceContext *> &dev_ctxes,
    VarHandle *out_var_handle, const platform::Place &out_place,
    SelectedRows *dst_selected_rows) {
  const CollectiveContext &collective_context =
      *CollectiveContext::GetInstance();

  // 1. gather local selected rows, merge them
  std::string gathered_var_name = out_var_handle->name() + "_gathered_tmp";
  auto scope = local_scopes_.at(out_var_handle->scope_idx());
  auto gathered_var_mid = scope->Var(gathered_var_name);
  auto gathered_select_rows =
      gathered_var_mid->GetMutable<framework::SelectedRows>();
69 70 71 72 73
  GatherLocalSelectedRowsFunctor functor(
      src_selected_rows, in_places, dev_ctxes, out_place, gathered_select_rows);
  WaitInputVarGenerated();
  functor();

X
xiexionghang 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
  // FIXME(gongwb): remove this Wait.
  Wait(dev_ctxes);

  // merge them
  auto merged_dev_ctx = dynamic_cast<DevCtx *>(dev_ctxes.at(out_place));
  std::string merged_var_name =
      GetRemoteVarName(out_var_handle->name(), collective_context.trainer_id_);
  auto merged_select_rows =
      scope->Var(merged_var_name)->GetMutable<SelectedRows>();
  operators::math::scatter::MergeAdd<DevCtx, DataType> merge_func;
  merge_func(*merged_dev_ctx, *gathered_select_rows, merged_select_rows);

  // 2. start collective server if it doesn't exist
  operators::distributed::CollectiveServer *server =
      operators::distributed::CollectiveServer::GetInstance(
          collective_context.endpoints_[collective_context.trainer_id_],
          collective_context.endpoints_.size() - 1);

  auto rpc_server = server->GetRPCServer();
  rpc_server->RegisterVar(merged_var_name,
                          operators::distributed::kRequestGetMonomerVariable,
                          scope, merged_dev_ctx);

  // 3. gather them from all remote nodes.
  std::vector<const SelectedRows *> remote;
  operators::distributed::CollectiveClient *client =
      operators::distributed::CollectiveClient::GetInstance();

  std::vector<operators::distributed::RemoteVar> vars;
  for (unsigned int i = 0; i < collective_context.endpoints_.size(); i++) {
    if (i == (unsigned)collective_context.trainer_id_) continue;

    operators::distributed::RemoteVar var;
    var.trainer_id_ = i;
    var.var_name_ = GetRemoteVarName(out_var_handle->name(), i);
    var.ep_ = collective_context.endpoints_[i];

    vars.push_back(var);
    VLOG(4) << "gather from:" << var.String();
  }

  // erase gathered vars
  merged_dev_ctx->Wait();
  scope->EraseVars(std::vector<std::string>{gathered_var_name});

  PADDLE_ENFORCE(client->Gather(vars, &remote, *merged_dev_ctx, scope));
  PADDLE_ENFORCE(remote.size() == vars.size());

  // 4. merged local selected rows.
  std::vector<const SelectedRows *> all;
  all.resize(collective_context.endpoints_.size());
  for (auto v : vars) {
    all[v.trainer_id_] =
        scope->FindVar(v.var_name_)->GetMutable<SelectedRows>();
  }
  all[collective_context.trainer_id_] = merged_select_rows;

  merge_func(*merged_dev_ctx, all, dst_selected_rows);

  rpc_server->WaitVarBarrier(merged_var_name);
  rpc_server->ClearVar(merged_var_name);

  // 5. clear mid vars
  std::vector<std::string> tmp_vars{merged_var_name};
  for (auto r : vars) {
    tmp_vars.push_back(r.var_name_);
  }
  scope->EraseVars(tmp_vars);
}
#endif

void ReduceOpHandle::RunImpl() {
  platform::RecordEvent record_event(Name());

  if (places_.size() == 1) return;
  // the input and output may have dummy var.
  auto in_var_handles = DynamicCast<VarHandle>(inputs_);

  PADDLE_ENFORCE_EQ(
      in_var_handles.size(), places_.size(),
      "The number of output should equal to the number of places.");

  VarHandle *out_var_handle;
  {
    auto out_var_handles = DynamicCast<VarHandle>(outputs_);

    PADDLE_ENFORCE_EQ(out_var_handles.size(), 1UL,
                      "The number of output should be one.");
    out_var_handle = out_var_handles.front();
  }

  auto in_0_handle = in_var_handles[0];

  auto &var_scopes = local_exec_scopes_;

  auto pre_in_var =
      var_scopes.at(in_0_handle->scope_idx())->FindVar(in_0_handle->name());
  PADDLE_ENFORCE_NOT_NULL(pre_in_var);

  // NOTE: The Places of all input tensor must be all on CPU or all on GPU.
  std::vector<platform::Place> in_places;  // used to get dev_ctx
  for (auto *in_handle : in_var_handles) {
    in_places.emplace_back(in_handle->place());
    auto in_var =
        var_scopes.at(in_handle->scope_idx())->FindVar(in_handle->name());
    PADDLE_ENFORCE_NOT_NULL(in_var);
    VariableVisitor::EnforceShapeAndDTypeEQ(*pre_in_var, *in_var);
  }

  auto out_var = var_scopes.at(out_var_handle->scope_idx())
                     ->FindVar(out_var_handle->name());
  PADDLE_ENFORCE_NOT_NULL(out_var);

  // NOTE: The tensors' Place of input and output must be all on GPU or all on
  // CPU.
  auto in_p = VariableVisitor::GetMutableTensor(pre_in_var).place();
  platform::Place t_out_p;
  if (platform::is_gpu_place(in_p)) {
    PADDLE_ENFORCE(platform::is_gpu_place(out_var_handle->place()),
                   "Places of input and output must be all on GPU.");
    t_out_p = out_var_handle->place();
  } else {
    t_out_p = platform::CPUPlace();
  }

  if (pre_in_var->IsType<framework::SelectedRows>()) {
    this->RunAndRecordEvent([&] {
      std::vector<const SelectedRows *> in_selected_rows =
          GetInputValues<SelectedRows>(in_var_handles, var_scopes);

      const CollectiveContext &collective_context =
          *CollectiveContext::GetInstance();
      VLOG(10) << "GatherSelectedRows CollectiveContext:"
               << collective_context.String();

      // TODO(gongwb): add cpu support
      if (collective_context.endpoints_.size() <= 1 ||
          is_cpu_place(in_places[0]) || is_cpu_place(t_out_p)) {
212 213 214 215 216
        GatherLocalSelectedRowsFunctor functor(
            in_selected_rows, in_places, dev_ctxes_, t_out_p,
            out_var->GetMutable<framework::SelectedRows>());
        WaitInputVarGenerated();
        functor();
X
xiexionghang 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
        return;
      }

#if defined PADDLE_WITH_CUDA && defined PADDLE_WITH_DISTRIBUTE
      if (in_selected_rows[0]->value().type() ==
          framework::proto::VarType::FP32) {
        GatherSelectedRows<platform::CUDADeviceContext, float>(
            in_selected_rows, in_places, dev_ctxes_, out_var_handle, t_out_p,
            out_var->GetMutable<framework::SelectedRows>());
      } else if (in_selected_rows[0]->value().type() ==
                 framework::proto::VarType::FP64) {
        GatherSelectedRows<platform::CUDADeviceContext, double>(
            in_selected_rows, in_places, dev_ctxes_, out_var_handle, t_out_p,
            out_var->GetMutable<framework::SelectedRows>());
      } else {
        PADDLE_THROW("only support double or float when gather SelectedRows");
      }
#endif
    });
  } else {
    std::vector<const LoDTensor *> lod_tensors =
        GetInputValues<LoDTensor>(in_var_handles, var_scopes);

    if (paddle::platform::is_cpu_place(lod_tensors[0]->place())) {
241
      WaitInputVarGenerated();
X
xiexionghang 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
      this->RunAndRecordEvent([&] {
        // FIXME(zcd): The order of summing is important,
        // especially when the type of data is float or double.
        // For example, the result of `a+b+c+d` may be different
        // with the result of `c+a+b+d`, so the summing order should be fixed.
        if (!FLAGS_cpu_deterministic) {
          ReduceLoDTensor func(lod_tensors,
                               out_var->GetMutable<framework::LoDTensor>());
          VisitDataType(lod_tensors[0]->type(), func);
        } else {
          // We sum lod_tensors to reduce_sum_trg which is in local_scopes_0
          // here, but it doesn't mean reduce_sum_trg must be in local_scopes_0.
          auto &reduce_sum_trg = *this->local_exec_scopes_[0]
                                      ->FindVar(out_var_handle->name())
                                      ->GetMutable<framework::LoDTensor>();
          ReduceLoDTensor func(lod_tensors, &reduce_sum_trg);
          VisitDataType(lod_tensors[0]->type(), func);

          auto trg = out_var->GetMutable<framework::LoDTensor>();
          if (reduce_sum_trg.data<void>() != trg->data<void>()) {
            TensorCopy(reduce_sum_trg, platform::CPUPlace(), trg);
          }
        }
      });
    } else if (paddle::platform::is_gpu_place(lod_tensors[0]->place())) {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
      auto pre_in = pre_in_var->Get<framework::LoDTensor>();
      VariableVisitor::ShareDimsAndLoD(*pre_in_var, out_var);
      VariableVisitor::GetMutableTensor(out_var).mutable_data(
          out_var_handle->place(), pre_in.type());

      auto out_p = out_var_handle->place();
      int root_id = boost::get<platform::CUDAPlace>(out_p).device;
      std::vector<std::function<void()>> all_reduce_calls;
      for (size_t i = 0; i < var_scopes.size(); ++i) {
        auto &p = in_places[i];
        auto &lod_tensor = *lod_tensors[i];

        int dev_id = boost::get<platform::CUDAPlace>(p).device;
        auto &nccl_ctx = nccl_ctxs_->at(dev_id);

        void *buffer = const_cast<void *>(lod_tensor.data<void>());
        void *recvbuffer = nullptr;
        if (root_id == dev_id) {
          recvbuffer =
              out_var->GetMutable<framework::LoDTensor>()->mutable_data(
                  out_var_handle->place());
        }

        int type = platform::ToNCCLDataType(lod_tensor.type());
        size_t numel = static_cast<size_t>(lod_tensor.numel());
        all_reduce_calls.emplace_back(
            [buffer, recvbuffer, type, numel, root_id, &nccl_ctx] {
              PADDLE_ENFORCE(platform::dynload::ncclReduce(
                  buffer, recvbuffer, numel, static_cast<ncclDataType_t>(type),
                  ncclSum, root_id, nccl_ctx.comm_, nccl_ctx.stream()));
            });
      }

301
      WaitInputVarGenerated();
X
xiexionghang 已提交
302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334
      this->RunAndRecordEvent([&] {
        platform::NCCLGroupGuard guard;
        for (auto &call : all_reduce_calls) {
          call();
        }
      });
#else
      PADDLE_THROW("CUDA is not enabled.");
#endif
    } else {
      PADDLE_THROW("Place should be CPUPlace or CUDAPlace.");
    }
  }
}

template <typename T>
std::vector<const T *> ReduceOpHandle::GetInputValues(
    const std::vector<VarHandle *> &in_var_handles,
    const std::vector<Scope *> &var_scopes) const {
  std::vector<const T *> in_selected_rows;
  for (auto *in_handle : in_var_handles) {
    auto &in_sr = var_scopes.at(in_handle->scope_idx())
                      ->FindVar(in_handle->name())
                      ->Get<T>();
    in_selected_rows.emplace_back(&in_sr);
  }
  return in_selected_rows;
}

std::string ReduceOpHandle::Name() const { return "reduce"; }
}  // namespace details
}  // namespace framework
}  // namespace paddle