build_strategy.h 7.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <memory>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
22
#include "boost/optional.hpp"
X
xiexionghang 已提交
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
#include "paddle/fluid/framework/ir/pass_builder.h"
#include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/enforce.h"

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
#include "paddle/fluid/platform/nccl_helper.h"
#endif

namespace paddle {
namespace framework {
namespace details {

struct BuildStrategy {
  // ParallelExecutor supports two modes of ReduceStrategy, kAllReduce and
  // kReduce, for CPU and GPU. If you use kAllReduce, different threads
  // optimize their parameters separately. If you use kReduce, the optimizations
  // of parameters are distributed to different threads.
  // For example, a model has 100 parameters and is running with four threads,
  // if you choose kAllReduce, every thread is to optimize 100 parameters
  // separately, if you choose kReduce, every thread is to optimize 25
  // parameters.
  // Of particular note is, if you use kReduce when using CPU training,
  // all the parameters are shared between different threads. This feature will
  // save memory.
  // FIXME(zcd): The result of the two modes(kAllReduce and kReduce) maybe not
  // equal for GPU. Because, the result of the different order of summing maybe
  // different, for example, the result of `a+b+c+d` may be different with the
  // result of `c+a+b+d`.
  // For GPU, the implementation of kAllReduce and kReduce is adopted NCCL,
  // so the result of kAllReduce and kReduce maybe not equal.
  // For CPU, if you want to fix the order of summing to make the result
  // of kAllReduce and kReduce no diff, you can add
  // `FLAGS_cpu_deterministic=true` to env.
  enum class ReduceStrategy { kAllReduce = 0, kReduce = 1 };

  enum class GradientScaleStrategy {
    kCoeffNumDevice = 0,
    kOne = 1,
    // user can customize gradient scale to use, and just feed
    // it into exe.run().
    kCustomized = 2,
  };

  ReduceStrategy reduce_{ReduceStrategy::kAllReduce};
  GradientScaleStrategy gradient_scale_{GradientScaleStrategy::kCoeffNumDevice};

  std::string debug_graphviz_path_{""};

  // Add dependency between backward ops and optimization ops, make sure that
  // all the backward ops are finished before running the optimization ops.
  // It might make the training speed of data parallelism faster.
  bool enable_backward_optimizer_op_deps_{true};
  // TODO(dev-paddle): enable_sequential_execution depends on
  // kStaleProgramOpDescs, it is not appropriate, because kStaleProgramOpDescs
  // will be removed in the near future.
  bool enable_sequential_execution_{false};
  bool remove_unnecessary_lock_{true};
  // TODO(dev-paddle): cache_runtime_context may cause some models to hang up
  // while running.
  bool cache_runtime_context_{false};

  // Operator fusion
  // TODO(dev-paddle): fuse_elewise_add_act_ops may cause some models have
  // cycle.
  bool fuse_elewise_add_act_ops_{false};
  // Fuse_all_optimizer_ops and fuse_all_reduce_ops require that gradients
  // should not be sparse types
92 93
  boost::optional<bool> fuse_all_optimizer_ops_{boost::none};
  boost::optional<bool> fuse_all_reduce_ops_{boost::none};
X
xiexionghang 已提交
94 95 96 97 98 99 100
  // fuse_relu_depthwise_conv can fuse the `relu ->
  // depthwise_conv`
  bool fuse_relu_depthwise_conv_{false};
  // NOTE(zcd): In reduce mode, fusing broadcast ops may make the program
  // faster. Because fusing broadcast OP equals delaying the execution of all
  // broadcast Ops, in this case, all nccl streams are used only for reduce
  // operations for a period of time.
101
  boost::optional<bool> fuse_broadcast_ops_{boost::none};
X
xiexionghang 已提交
102 103 104 105 106 107 108 109 110 111
  // replace batch_norm with sync_batch_norm.
  bool sync_batch_norm_{false};

  // mkldnn_enabled_op_types specify the operator type list to
  // use MKLDNN acceleration. It is null in default, means
  // that all the operators supported by MKLDNN will be
  // accelerated. And it should not be set when
  // FLAGS_use_mkldnn=false
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

112 113 114 115
  // By default, memory_optimize would be opened if gc is disabled, and
  // be closed if gc is enabled.
  // Users can forcely enable/disable memory_optimize by setting True/False.
  boost::optional<bool> memory_optimize_{boost::none};
X
xiexionghang 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185

  // Turn on inplace by default.
  bool enable_inplace_{true};

  // FIXME(zcd): is_distribution_ is a temporary field, because in pserver mode,
  // num_trainers is 1, so the current fields of build_strategy doesn't tell if
  // it's distributed model.
  bool is_distribution_{false};
  bool async_mode_{false};
  int num_trainers_{1};
  int trainer_id_{0};
  std::vector<std::string> trainers_endpoints_;

  // NCCL config
  size_t nccl_comm_num_{1};
  // The picture is here:
  // https://github.com/PaddlePaddle/Paddle/pull/17263#discussion_r285411396
  bool use_hierarchical_allreduce_{false};
  // Nccl ranks in a node when use hierarchical allreduce, it's setted to gpu
  // cards' number in most cases.
  size_t hierarchical_allreduce_inter_nranks_{0};
  // Nccl ranks bewteen nodes when use hierarchical allreduce, it's setted to
  // nodes number.
  size_t hierarchical_allreduce_exter_nranks_{0};

  // NOTE:
  // Before you add new options, think if it's a general strategy that works
  // with other strategy. If not, the strategy should be created through
  // CreatePassesFromStrategy and the pass can be managed separately.

  // User normally doesn't need to call this API.
  // The PassBuilder allows for more customized insert, remove of passes
  // from python side.
  // A new PassBuilder is created based on configs defined above and
  // passes are owned by the PassBuilder.
  std::shared_ptr<ir::PassBuilder> CreatePassesFromStrategy(
      bool finalize_strategy) const;

  bool IsFinalized() const { return is_finalized_; }

  bool IsMultiDevPass(const std::string &pass_name) const;

  // Apply the passes built by the pass_builder_. The passes will be
  // applied to the Program and output an ir::Graph.
  ir::Graph *Apply(ir::Graph *graph, const std::vector<platform::Place> &places,
                   const std::string &loss_var_name,
                   const std::vector<Scope *> &local_scopes,
                   const size_t &nranks,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
                   const bool use_cuda,
                   platform::NCCLCommunicator *nccl_ctxs) const;
#else
                   const bool use_cuda) const;
#endif

  // If set true, ParallelExecutor would build the main_program into multiple
  // graphs,
  // each of the graphs would run with one device. This approach can achieve
  // better performance
  // on some scenarios.
  mutable bool enable_parallel_graph_ = false;

 private:
  mutable bool is_finalized_ = false;
  mutable std::shared_ptr<ir::PassBuilder> pass_builder_;
};

}  // namespace details
}  // namespace framework
}  // namespace paddle