build_strategy.cc 16.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/details/build_strategy.h"

#include <glog/logging.h>
#include <memory>
#include <unordered_set>
#include <utility>
#include "paddle/fluid/framework/details/reduce_op_handle.h"
#include "paddle/fluid/framework/ir/graph.h"
#include "paddle/fluid/framework/ir/graph_helper.h"
24
#include "paddle/fluid/framework/ir/graph_printer.h"
X
xiexionghang 已提交
25 26 27 28 29
#include "paddle/fluid/framework/ir/graph_to_program_pass.h"
#include "paddle/fluid/framework/ir/graph_viz_pass.h"
#include "paddle/fluid/framework/ir/multi_devices_graph_pass/multi_devices_graph_pass.h"

DECLARE_bool(use_mkldnn);
30
DECLARE_bool(use_ngraph);
X
xiexionghang 已提交
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45

namespace paddle {
namespace framework {
namespace details {

static inline bool SeqOnlyAllReduceOps(const BuildStrategy &strategy) {
  // Should fix the allreduce op order if scheduling
  // them in multiple threads or processes to avoid hang.
  // NOTE: ParallelGraph would execute this pass on each graph, so
  // don't need to append it here.
  return (!strategy.enable_sequential_execution_ &&
          strategy.num_trainers_ > 1) &&
         !strategy.enable_parallel_graph_;
}

46 47 48 49 50 51
static inline void ConvertDefaultValue(boost::optional<bool> *default_value) {
  if (*default_value == boost::none) {
    *default_value = true;
  }
}

X
xiexionghang 已提交
52 53 54 55
class ParallelExecutorPassBuilder : public ir::PassBuilder {
 public:
  explicit ParallelExecutorPassBuilder(const BuildStrategy &strategy)
      : ir::PassBuilder(), strategy_(strategy) {
56
    ResolveOptionConfliction();
X
xiexionghang 已提交
57

58 59 60 61
    AppendPrintGraphPass("graph_viz_pass", "_original_graph");
    AppendPassWithCheck(strategy_.enable_sequential_execution_,
                        "sequential_execution_pass");
    AppendPassWithCheck(strategy_.sync_batch_norm_, "sync_batch_norm_pass");
X
xiexionghang 已提交
62

63
    AppendPassToUseNgraph("ngraph_subgraph_pass");
X
xiexionghang 已提交
64

65 66
    AppendOpFusePasses();
    AppendPrintGraphPass("graph_viz_pass", "_fused_graph");
X
xiexionghang 已提交
67

68 69
    AppendMultiDevPass();
    AppendMultiGraphOptPasses();
X
xiexionghang 已提交
70

71 72 73 74 75 76 77 78 79 80
    AppendPassToSetMkldnnAttr("mkldnn_placement_pass");
    // runtime_context_cache pass should be the last pass to enable the attr of
    // all original and fused operators. But no operators can be enabled this
    // attr if putting it after MultiDevPass.
    AppendPassWithCheck(strategy_.cache_runtime_context_,
                        "runtime_context_cache_pass");
    AppendPassWithCheck(strategy_.remove_unnecessary_lock_,
                        "modify_op_lock_and_record_event_pass");
    // Note: This pass is used to check whether the multi_device_graph is right.
    AppendPass("multi_devices_check_pass");
X
xiexionghang 已提交
81

82 83
    SetCollectiveContext();
  }
X
xiexionghang 已提交
84

85 86 87 88 89 90 91 92 93 94 95
  void ResolveOptionConfliction() {
    // Specifies the restrictions between different pass.
    if (strategy_.enable_parallel_graph_) {
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_optimizer_ops_ = false;
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
          << "fuse_all_reduce_ops doesn't work under "
             "parallel_graph.";
      strategy_.fuse_all_reduce_ops_ = false;
X
xiexionghang 已提交
96 97
    }
    if (strategy_.is_distribution_) {
98 99 100
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
          << "Currently, fuse_all_optimizer_ops only works under "
             "Non-distributed mode.";
X
xiexionghang 已提交
101
      strategy_.fuse_all_optimizer_ops_ = false;
102 103 104 105
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
          << "Currently, fuse_all_reduce_ops_ only works under "
             "Non-distributed mode.";
      strategy_.fuse_all_reduce_ops_ = false;
X
xiexionghang 已提交
106
    }
107 108 109 110
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kReduce) {
      LOG_IF(WARNING, strategy_.fuse_all_optimizer_ops_ == true)
          << "Currently, fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
X
xiexionghang 已提交
111
      strategy_.fuse_all_optimizer_ops_ = false;
112 113 114 115
      LOG_IF(WARNING, strategy_.fuse_all_reduce_ops_ == true)
          << "fuse_all_optimizer_ops only works under AllReduce "
             "mode.";
      strategy_.fuse_all_reduce_ops_ = false;
X
xiexionghang 已提交
116
    }
117 118 119 120 121
    if (strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce) {
      LOG_IF(WARNING, strategy_.fuse_broadcast_ops_ == true)
          << "Currently, fuse_broadcast_ops only works under Reduce "
             "mode.";
      strategy_.fuse_broadcast_ops_ = false;
X
xiexionghang 已提交
122 123
    }

124 125 126
    ConvertDefaultValue(&strategy_.fuse_all_optimizer_ops_);
    ConvertDefaultValue(&strategy_.fuse_all_reduce_ops_);
    ConvertDefaultValue(&strategy_.fuse_broadcast_ops_);
X
xiexionghang 已提交
127

128 129 130 131 132
    if (strategy_.fuse_all_optimizer_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
          << "Currently, fuse_all_optimizer_ops doesn't work under "
             "async mode.";
      strategy_.fuse_all_optimizer_ops_ = !strategy_.async_mode_;
X
xiexionghang 已提交
133
    }
134 135 136 137 138
    if (strategy_.fuse_all_reduce_ops_ == true) {
      LOG_IF(WARNING, strategy_.async_mode_)
          << "Currently, fuse_all_reduce_ops doesn't work under "
             "async mode.";
      strategy_.fuse_all_reduce_ops_ = !strategy_.async_mode_;
X
xiexionghang 已提交
139
    }
140
  }
X
xiexionghang 已提交
141

142 143 144 145 146 147
  void AppendMultiGraphOptPasses() {
    // NOTE: fuse_all_reduce_ops will count the number of all_reduce operator
    // first, if the number is zero, fuse_all_reduce_ops will do nothing.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "fuse_all_reduce_op_pass");
    AppendPrintGraphPass("multi_devices_print_pass", "_multi_devices_graph");
X
xiexionghang 已提交
148 149 150

    // experimental shows that the program will be faster if append
    // all_reduce_deps_pass here.
151 152
    bool append_all_reduce_deps_pass =
        !strategy_.enable_parallel_graph_ &&
X
xiexionghang 已提交
153
        (SeqOnlyAllReduceOps(strategy_) ||
154 155
         strategy_.reduce_ == BuildStrategy::ReduceStrategy::kAllReduce);
    AppendPassWithCheck(append_all_reduce_deps_pass, "all_reduce_deps_pass");
X
xiexionghang 已提交
156

157 158
    bool append_backward_optimizer_op_deps_pass =
        strategy_.num_trainers_ > 1 && !strategy_.async_mode_ &&
X
xiexionghang 已提交
159
        !strategy_.is_distribution_ &&
160 161 162 163
        strategy_.enable_backward_optimizer_op_deps_;
    AppendPassWithCheck(append_backward_optimizer_op_deps_pass,
                        "backward_optimizer_op_deps_pass");
  }
X
xiexionghang 已提交
164

165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
  void AppendOpFusePasses() {
    AppendPassWithCheck(strategy_.fuse_relu_depthwise_conv_,
                        "fuse_relu_depthwise_conv_pass");
    AppendPassWithCheck(strategy_.fuse_elewise_add_act_ops_,
                        "fuse_elewise_add_act_pass");
    // for single card training, fuse_all_reduce_ops is unnecessary.
    // coalesce_grad_tensor_pass should be before of MultiDevPass.
    AppendPassWithCheck(strategy_.fuse_all_reduce_ops_,
                        "coalesce_grad_tensor_pass");
    // Fuse all the optimization operators.
    // NOTE: fuse_all_xx_ops will count the number of xx operator first,
    // if the number is zero, fuse_all_reduce_ops will do nothing.
    // Currently, only one type of optimization algorithm can be fused.
    if (strategy_.fuse_all_optimizer_ops_ == true) {
      AppendPass("fuse_adam_op_pass");
      AppendPass("fuse_sgd_op_pass");
      AppendPass("fuse_momentum_op_pass");
X
xiexionghang 已提交
182
    }
183
  }
X
xiexionghang 已提交
184

185 186 187 188 189 190 191 192 193 194 195
  void SetCollectiveContext() const {
    CollectiveContext *context = CollectiveContext::GetInstance();
    context->endpoints_ = strategy_.trainers_endpoints_;
    context->trainer_id_ = strategy_.trainer_id_;
    PADDLE_ENFORCE_GE(strategy_.trainer_id_, 0, "trainer_id_ >= 0");
    if (strategy_.trainer_id_ > 0 && strategy_.trainers_endpoints_.size() > 0) {
      PADDLE_ENFORCE_LT(static_cast<size_t>(strategy_.trainer_id_),
                        strategy_.trainers_endpoints_.size(),
                        "trainer_id_ < endpoints_ size");
    }
    VLOG(1) << "CollectiveContext:" << context->String();
X
xiexionghang 已提交
196 197 198
  }

  // Convert graph to run on multi-devices.
199
  void AppendMultiDevPass() {
X
xiexionghang 已提交
200 201 202 203 204 205
    ir::Pass *multi_devices_pass = nullptr;
    if (strategy_.async_mode_) {
      multi_devices_pass = AppendPass("async_multi_devices_pass").get();
    } else if (strategy_.is_distribution_) {
      multi_devices_pass = AppendPass("dist_multi_devices_pass").get();
    } else {
206 207 208 209 210 211 212 213 214 215 216
      switch (strategy_.reduce_) {
        case BuildStrategy::ReduceStrategy::kAllReduce:
          multi_devices_pass =
              AppendPass("all_reduce_mode_multi_devices_pass").get();
          break;
        case BuildStrategy::ReduceStrategy::kReduce:
          multi_devices_pass =
              AppendPass("reduce_mode_multi_devices_pass").get();
          break;
        default:
          PADDLE_THROW("Unknown reduce strategy.");
X
xiexionghang 已提交
217 218 219 220 221 222
      }
    }
    multi_devices_pass->SetNotOwned<const BuildStrategy>("strategy",
                                                         &strategy_);
  }

223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
  void AppendPrintGraphPass(const std::string &pass_name,
                            const std::string &debug_file_suffix) {
    if (!strategy_.debug_graphviz_path_.empty()) {
      auto viz_pass = AppendPass(pass_name);
      const std::string graph_path = string::Sprintf(
          "%s%s", strategy_.debug_graphviz_path_.c_str(), debug_file_suffix);
      viz_pass->Set<std::string>(ir::kGraphvizPath,
                                 new std::string(graph_path));
    }
  }

  void AppendPassWithCheck(const boost::optional<bool> &append_pass,
                           const std::string &pass_name) {
    AppendPassWithCheck(append_pass == true, pass_name);
  }

  void AppendPassWithCheck(bool append_pass, const std::string &pass_name) {
    if (append_pass) {
      AppendPass(pass_name);
    }
  }

  void AppendPassToSetMkldnnAttr(const std::string &pass_name) {
#ifdef PADDLE_WITH_MKLDNN
    if (FLAGS_use_mkldnn) {
      AppendPass(pass_name);
    } else if (!strategy_.mkldnn_enabled_op_types_.empty()) {
      LOG(WARNING)
          << "mkldnn_enabled_op_types specify the operator type list to "
             "use MKLDNN acceleration. It is null in default, means "
             "that all the operators supported by MKLDNN will be "
             "accelerated. And it should not be set when "
             "FLAGS_use_mkldnn=false.";
    }
#else
    PADDLE_ENFORCE(!FLAGS_use_mkldnn,
                   "Please compile with MKLDNN first to use MKLDNN");
#endif
  }

  void AppendPassToUseNgraph(const std::string &pass_name) {
#ifdef PADDLE_WITH_NGRAPH
    if (FLAGS_use_ngraph) {
      if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kAllReduce) {
        LOG(WARNING) << "Currently ngraph_subgraph_pass works under AllReduce,"
                        "please set FLAGS_use_ngraph=false.";
      } else {
        AppendPass(pass_name);
      }
    }
#else
    PADDLE_ENFORCE_NE(FLAGS_use_ngraph, true,
                      "Please compile with NGRAPH first to use NGRAPH");
#endif
  }

X
xiexionghang 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
 private:
  BuildStrategy strategy_;
};

std::shared_ptr<ir::PassBuilder> BuildStrategy::CreatePassesFromStrategy(
    bool finalize_strategy) const {
  if (is_finalized_) {
    return pass_builder_;
  }
  pass_builder_.reset(new ParallelExecutorPassBuilder(*this));
  if (finalize_strategy) {
    is_finalized_ = true;
  }
  return pass_builder_;
}

bool BuildStrategy::IsMultiDevPass(const std::string &pass_name) const {
  return framework::ir::MultiDevSSAGraphBuilder().count(pass_name) > 0;
}

ir::Graph *BuildStrategy::Apply(ir::Graph *graph,
                                const std::vector<platform::Place> &places,
                                const std::string &loss_var_name,
                                const std::vector<Scope *> &local_scopes,
                                const size_t &nranks,
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
                                const bool use_cuda,
                                platform::NCCLCommunicator *nccl_ctxs) const {
#else
                                const bool use_cuda) const {
#endif
310
  VLOG(1) << "apply all passes";
X
xiexionghang 已提交
311 312 313 314
  // Create a default one if not finalized by user.
  CreatePassesFromStrategy(false);

  for (std::shared_ptr<ir::Pass> &pass : pass_builder_->AllPasses()) {
315
    VLOG(1) << "BuildStrategy::Apply pass:" << pass->Type();
X
xiexionghang 已提交
316 317 318 319 320 321 322 323
    if (IsMultiDevPass(pass->Type())) {
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(ir::kLossVarName);
      pass->SetNotOwned<const std::string>(ir::kLossVarName, &loss_var_name);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
324 325
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
X
xiexionghang 已提交
326 327 328 329 330 331

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
#endif
332 333 334
    } else if (pass->Type() == "fuse_all_reduce_op_pass") {
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
X
xiexionghang 已提交
335 336 337 338 339 340
      pass->Erase(kPlaces);
      pass->SetNotOwned<const std::vector<platform::Place>>(kPlaces, &places);
      pass->Erase(kLocalScopes);
      pass->SetNotOwned<const std::vector<Scope *>>(kLocalScopes,
                                                    &local_scopes);
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
341 342 343 344 345 346
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
X
xiexionghang 已提交
347 348
#endif
    } else if (pass->Type() == "coalesce_grad_tensor_pass") {
349 350
      pass->Erase(kNRanks);
      pass->Set<size_t>(kNRanks, new size_t(nranks));
X
xiexionghang 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
    } else if (pass->Type() == "sequential_execution_pass") {
      LOG(INFO) << "set enable_sequential_execution:"
                << enable_sequential_execution_;
    } else if (pass->Type() == "all_reduce_deps_pass") {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
      platform::NCCLCommunicator *nctx = use_cuda ? nccl_ctxs : nullptr;
      pass->Erase(kNCCLCtxs);
      pass->SetNotOwned<platform::NCCLCommunicator>(kNCCLCtxs, nctx);
      pass->Erase(kUseHierarchicalAllReduce);
      pass->Set<bool>(kUseHierarchicalAllReduce,
                      new bool(use_hierarchical_allreduce_));
#endif
      LOG(INFO) << "SeqOnlyAllReduceOps:" << SeqOnlyAllReduceOps(*this)
                << ", num_trainers:" << num_trainers_;
    } else if (pass->Type() == "fuse_relu_depthwise_conv_pass") {
      if (!use_cuda) {
        LOG(WARNING) << "fuse_relu_depthwise_conv_pass is only supported on "
                        "GPU, skipped.";
        continue;
      }
    } else if (pass->Type() == "mkldnn_placement_pass") {
      pass->Set("mkldnn_enabled_op_types",
                new std::unordered_set<std::string>(mkldnn_enabled_op_types_));
    } else if (pass->Type() == "backward_optimizer_op_deps_pass") {
      if (!use_cuda) {
        VLOG(1) << "backward_optimizer_op_deps_pass is only supported on "
                   "GPU, skipped.";
        continue;
      }
    }
381
    VLOG(1) << "Start Apply Pass " << pass->Type();
X
xiexionghang 已提交
382
    graph = pass->Apply(graph);
383
    VLOG(1) << "Finish Apply Pass " << pass->Type();
X
xiexionghang 已提交
384
  }
385
  VLOG(1) << "All Passes Applied";
X
xiexionghang 已提交
386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417
  return graph;
}

}  // namespace details
}  // namespace framework
}  // namespace paddle

USE_PASS(sync_batch_norm_pass);
USE_PASS(fuse_relu_depthwise_conv_pass);
USE_PASS(fuse_elewise_add_act_pass);
USE_PASS(graph_viz_pass);
USE_PASS(multi_batch_merge_pass);
USE_PASS(reduce_mode_multi_devices_pass);
USE_PASS(all_reduce_mode_multi_devices_pass);
USE_PASS(dist_multi_devices_pass);
USE_PASS(multi_devices_check_pass);
USE_PASS(multi_devices_print_pass);
USE_PASS(sequential_execution_pass);
USE_PASS(all_reduce_deps_pass);
USE_PASS(backward_optimizer_op_deps_pass);
USE_PASS(modify_op_lock_and_record_event_pass);
USE_PASS(lock_free_optimize_pass);
USE_PASS(coalesce_grad_tensor_pass);
USE_PASS(graph_to_program_pass);
USE_PASS(fuse_adam_op_pass);
USE_PASS(fuse_sgd_op_pass);
USE_PASS(fuse_momentum_op_pass);
USE_PASS(fuse_all_reduce_op_pass);
USE_PASS(runtime_context_cache_pass);
#ifdef PADDLE_WITH_MKLDNN
USE_PASS(mkldnn_placement_pass);
#endif
418 419 420
#ifdef PADDLE_WITH_NGRAPH
USE_PASS(ngraph_subgraph_pass);
#endif