data_feed.h 19.2 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#pragma once

#if defined _WIN32 || defined __APPLE__
#else
#define _LINUX
#endif

#include <fstream>
#include <future>  // NOLINT
#include <memory>
#include <mutex>  // NOLINT
#include <sstream>
#include <string>
#include <thread>  // NOLINT
29
#include <unordered_map>
X
xiexionghang 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#include <utility>
#include <vector>

#include "paddle/fluid/framework/archive.h"
#include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/channel.h"
#include "paddle/fluid/framework/data_feed.pb.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/variable.h"
#include "paddle/fluid/string/string_helper.h"

namespace paddle {
namespace framework {

// DataFeed is the base virtual class for all ohther DataFeeds.
// It is used to read files and parse the data for subsequent trainer.
// Example:
//   DataFeed* reader =
//   paddle::framework::DataFeedFactory::CreateDataFeed(data_feed_name);
//   reader->Init(data_feed_desc); // data_feed_desc is a protobuf object
//   reader->SetFileList(filelist);
//   const std::vector<std::string> & use_slot_alias =
//   reader->GetUseSlotAlias();
//   for (auto name: use_slot_alias){ // for binding memory
//     reader->AddFeedVar(scope->Var(name), name);
//   }
//   reader->Start();
//   while (reader->Next()) {
//      // trainer do something
//   }
class DataFeed {
 public:
  DataFeed() {
    mutex_for_pick_file_ = nullptr;
    file_idx_ = nullptr;
  }
  virtual ~DataFeed() {}
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
  virtual bool CheckFile(const char* filename) {
    PADDLE_THROW("This function(CheckFile) is not implemented.");
  }
  // Set filelist for DataFeed.
  // Pay attention that it must init all readers before call this function.
  // Otherwise, Init() function will init finish_set_filelist_ flag.
  virtual bool SetFileList(const std::vector<std::string>& files);
  virtual bool Start() = 0;

  // The trainer calls the Next() function, and the DataFeed will load a new
  // batch to the feed_vec. The return value of this function is the batch
  // size of the current batch.
  virtual int Next() = 0;
  // Get all slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetAllSlotAlias() {
    return all_slots_;
  }
  // Get used slots' alias which defined in protofile
  virtual const std::vector<std::string>& GetUseSlotAlias() {
    return use_slots_;
  }
  // This function is used for binding feed_vec memory
  virtual void AddFeedVar(Variable* var, const std::string& name);

  // This function is used for binding feed_vec memory in a given scope
  virtual void AssignFeedVar(const Scope& scope);

  // This function will do nothing at default
  virtual void SetInputChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetOutputChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetConsumeChannel(void* channel) {}
  // This function will do nothing at default
  virtual void SetThreadId(int thread_id) {}
  // This function will do nothing at default
  virtual void SetThreadNum(int thread_num) {}
  // This function will do nothing at default
  virtual void SetParseInsId(bool parse_ins_id) {}
108
  virtual void SetParseContent(bool parse_content) {}
X
xiexionghang 已提交
109 110 111 112
  virtual void SetFileListMutex(std::mutex* mutex) {
    mutex_for_pick_file_ = mutex;
  }
  virtual void SetFileListIndex(size_t* file_index) { file_idx_ = file_index; }
113 114 115 116 117 118 119
  virtual const std::vector<std::string>& GetInsIdVec() const {
    return ins_id_vec_;
  }
  virtual const std::vector<std::string>& GetInsContentVec() const {
    return ins_content_vec_;
  }
  virtual int GetCurBatchSize() { return batch_size_; }
X
xiexionghang 已提交
120 121 122
  virtual void LoadIntoMemory() {
    PADDLE_THROW("This function(LoadIntoMemory) is not implemented.");
  }
123 124 125 126
  virtual void SetPlace(const paddle::platform::Place& place) {
    place_ = place;
  }
  virtual const paddle::platform::Place& GetPlace() const { return place_; }
X
xiexionghang 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139

 protected:
  // The following three functions are used to check if it is executed in this
  // order:
  //   Init() -> SetFileList() -> Start() -> Next()
  virtual void CheckInit();
  virtual void CheckSetFileList();
  virtual void CheckStart();
  virtual void SetBatchSize(
      int batch);  // batch size will be set in Init() function
  // This function is used to pick one file from the global filelist(thread
  // safe).
  virtual bool PickOneFile(std::string* filename);
140
  virtual void CopyToFeedTensor(void* dst, const void* src, size_t size);
X
xiexionghang 已提交
141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174

  std::vector<std::string> filelist_;
  size_t* file_idx_;
  std::mutex* mutex_for_pick_file_;

  // the alias of used slots, and its order is determined by
  // data_feed_desc(proto object)
  std::vector<std::string> use_slots_;
  std::vector<bool> use_slots_is_dense_;

  // the alias of all slots, and its order is determined by data_feed_desc(proto
  // object)
  std::vector<std::string> all_slots_;
  std::vector<std::string> all_slots_type_;
  std::vector<std::vector<int>> use_slots_shape_;
  std::vector<int> inductive_shape_index_;
  std::vector<int> total_dims_without_inductive_;
  // For the inductive shape passed within data
  std::vector<std::vector<int>> multi_inductive_shape_index_;
  std::vector<int>
      use_slots_index_;  // -1: not used; >=0: the index of use_slots_

  // The data read by DataFeed will be stored here
  std::vector<LoDTensor*> feed_vec_;

  // the batch size defined by user
  int default_batch_size_;
  // current batch size
  int batch_size_;

  bool finish_init_;
  bool finish_set_filelist_;
  bool finish_start_;
  std::string pipe_command_;
175 176 177
  std::vector<std::string> ins_id_vec_;
  std::vector<std::string> ins_content_vec_;
  platform::Place place_;
X
xiexionghang 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
};

// PrivateQueueDataFeed is the base virtual class for ohther DataFeeds.
// It use a read-thread to read file and parse data to a private-queue
// (thread level), and get data from this queue when trainer call Next().
template <typename T>
class PrivateQueueDataFeed : public DataFeed {
 public:
  PrivateQueueDataFeed() {}
  virtual ~PrivateQueueDataFeed() {}
  virtual bool Start();
  virtual int Next();

 protected:
  // The thread implementation function for reading file and parse.
  virtual void ReadThread();
  // This function is used to set private-queue size, and the most
  // efficient when the queue size is close to the batch size.
  virtual void SetQueueSize(int queue_size);
  // The reading and parsing method called in the ReadThread.
  virtual bool ParseOneInstance(T* instance) = 0;
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
  // This function is used to put instance to vec_ins
  virtual void AddInstanceToInsVec(T* vec_ins, const T& instance,
                                   int index) = 0;
  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec(const T& ins_vec) = 0;

  // The thread for read files
  std::thread read_thread_;
  // using ifstream one line and one line parse is faster
  // than using fread one buffer and one buffer parse.
  //   for a 601M real data:
  //     ifstream one line and one line parse: 6034 ms
  //     fread one buffer and one buffer parse: 7097 ms
  std::ifstream file_;
  std::shared_ptr<FILE> fp_;
  size_t queue_size_;
  string::LineFileReader reader_;
  // The queue for store parsed data
  std::shared_ptr<paddle::framework::ChannelObject<T>> queue_;
};

template <typename T>
class InMemoryDataFeed : public DataFeed {
 public:
  InMemoryDataFeed();
  virtual ~InMemoryDataFeed() {}
  virtual void Init(const DataFeedDesc& data_feed_desc) = 0;
  virtual bool Start();
  virtual int Next();
  virtual void SetInputChannel(void* channel);
  virtual void SetOutputChannel(void* channel);
  virtual void SetConsumeChannel(void* channel);
  virtual void SetThreadId(int thread_id);
  virtual void SetThreadNum(int thread_num);
  virtual void SetParseInsId(bool parse_ins_id);
235
  virtual void SetParseContent(bool parse_content);
X
xiexionghang 已提交
236 237 238 239 240 241 242 243 244 245
  virtual void LoadIntoMemory();

 protected:
  virtual bool ParseOneInstance(T* instance) = 0;
  virtual bool ParseOneInstanceFromPipe(T* instance) = 0;
  virtual void PutToFeedVec(const std::vector<T>& ins_vec) = 0;

  int thread_id_;
  int thread_num_;
  bool parse_ins_id_;
246
  bool parse_content_;
X
xiexionghang 已提交
247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
  std::ifstream file_;
  std::shared_ptr<FILE> fp_;
  paddle::framework::ChannelObject<T>* input_channel_;
  paddle::framework::ChannelObject<T>* output_channel_;
  paddle::framework::ChannelObject<T>* consume_channel_;
};

// This class define the data type of instance(ins_vec) in MultiSlotDataFeed
class MultiSlotType {
 public:
  MultiSlotType() {}
  ~MultiSlotType() {}
  void Init(const std::string& type, size_t reserved_size = 0) {
    CheckType(type);
    if (type_[0] == 'f') {
      float_feasign_.clear();
      if (reserved_size) {
        float_feasign_.reserve(reserved_size);
      }
    } else if (type_[0] == 'u') {
      uint64_feasign_.clear();
      if (reserved_size) {
        uint64_feasign_.reserve(reserved_size);
      }
    }
    type_ = type;
  }
  void InitOffset(size_t max_batch_size = 0) {
    if (max_batch_size > 0) {
      offset_.reserve(max_batch_size + 1);
    }
    offset_.resize(1);
    // LoDTensor' lod is counted from 0, the size of lod
    // is one size larger than the size of data.
    offset_[0] = 0;
  }
  const std::vector<size_t>& GetOffset() const { return offset_; }
  std::vector<size_t>& MutableOffset() { return offset_; }
  void AddValue(const float v) {
    CheckFloat();
    float_feasign_.push_back(v);
  }
  void AddValue(const uint64_t v) {
    CheckUint64();
    uint64_feasign_.push_back(v);
  }
  void CopyValues(const float* input, size_t size) {
    CheckFloat();
    float_feasign_.resize(size);
    memcpy(float_feasign_.data(), input, size * sizeof(float));
  }
  void CopyValues(const uint64_t* input, size_t size) {
    CheckUint64();
    uint64_feasign_.resize(size);
    memcpy(uint64_feasign_.data(), input, size * sizeof(uint64_t));
  }
  void AddIns(const MultiSlotType& ins) {
    if (ins.GetType()[0] == 'f') {  // float
      CheckFloat();
      auto& vec = ins.GetFloatData();
      offset_.push_back(offset_.back() + vec.size());
      float_feasign_.insert(float_feasign_.end(), vec.begin(), vec.end());
    } else if (ins.GetType()[0] == 'u') {  // uint64
      CheckUint64();
      auto& vec = ins.GetUint64Data();
      offset_.push_back(offset_.back() + vec.size());
      uint64_feasign_.insert(uint64_feasign_.end(), vec.begin(), vec.end());
    }
  }
  void AppendValues(const uint64_t* input, size_t size) {
    CheckUint64();
    offset_.push_back(offset_.back() + size);
    uint64_feasign_.insert(uint64_feasign_.end(), input, input + size);
  }
  void AppendValues(const float* input, size_t size) {
    CheckFloat();
    offset_.push_back(offset_.back() + size);
    float_feasign_.insert(float_feasign_.end(), input, input + size);
  }
  const std::vector<float>& GetFloatData() const { return float_feasign_; }
  std::vector<float>& MutableFloatData() { return float_feasign_; }
  const std::vector<uint64_t>& GetUint64Data() const { return uint64_feasign_; }
  std::vector<uint64_t>& MutableUint64Data() { return uint64_feasign_; }
  const std::string& GetType() const { return type_; }
  size_t GetBatchSize() { return offset_.size() - 1; }
  std::string& MutableType() { return type_; }

  std::string DebugString() {
    std::stringstream ss;
    ss << "\ntype: " << type_ << "\n";
    ss << "offset: ";
    ss << "[";
    for (const size_t& i : offset_) {
      ss << offset_[i] << ",";
    }
    ss << "]\ndata: [";
    if (type_[0] == 'f') {
      for (const float& i : float_feasign_) {
        ss << i << ",";
      }
    } else {
      for (const uint64_t& i : uint64_feasign_) {
        ss << i << ",";
      }
    }
    ss << "]\n";
    return ss.str();
  }

 private:
  void CheckType(const std::string& type) const {
    PADDLE_ENFORCE((type == "uint64") || (type == "float"),
                   "There is no this type<%s>.", type);
  }
  void CheckFloat() const {
    PADDLE_ENFORCE(type_[0] == 'f', "Add %s value to float slot.", type_);
  }
  void CheckUint64() const {
    PADDLE_ENFORCE(type_[0] == 'u', "Add %s value to uint64 slot.", type_);
  }
  std::vector<float> float_feasign_;
  std::vector<uint64_t> uint64_feasign_;
  std::string type_;
  std::vector<size_t> offset_;
};

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const MultiSlotType& ins) {
  ar << ins.GetType();
#ifdef _LINUX
  ar << ins.GetOffset();
#else
  const auto& offset = ins.GetOffset();
  ar << (uint64_t)offset.size();
  for (const size_t& x : offset) {
    ar << (const uint64_t)x;
  }
#endif
  ar << ins.GetFloatData();
  ar << ins.GetUint64Data();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           MultiSlotType& ins) {
  ar >> ins.MutableType();
#ifdef _LINUX
  ar >> ins.MutableOffset();
#else
  auto& offset = ins.MutableOffset();
  offset.resize(ar.template Get<uint64_t>());
  for (size_t& x : offset) {
    uint64_t t;
    ar >> t;
    x = (size_t)t;
  }
#endif
  ar >> ins.MutableFloatData();
  ar >> ins.MutableUint64Data();
  return ar;
}

union FeatureKey {
  uint64_t uint64_feasign_;
  float float_feasign_;
};

struct FeatureItem {
  FeatureItem() {}
  FeatureItem(FeatureKey sign, uint16_t slot) {
    this->sign() = sign;
    this->slot() = slot;
  }
  FeatureKey& sign() { return *(reinterpret_cast<FeatureKey*>(sign_buffer())); }
  const FeatureKey& sign() const {
    const FeatureKey* ret = reinterpret_cast<FeatureKey*>(sign_buffer());
    return *ret;
  }
  uint16_t& slot() { return slot_; }
  const uint16_t& slot() const { return slot_; }

 private:
  char* sign_buffer() const { return const_cast<char*>(sign_); }
  char sign_[sizeof(FeatureKey)];
  uint16_t slot_;
};

// sizeof Record is much less than std::vector<MultiSlotType>
struct Record {
  std::vector<FeatureItem> uint64_feasigns_;
  std::vector<FeatureItem> float_feasigns_;
  std::string ins_id_;
441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476
  std::string content_;
};

struct RecordCandidate {
  std::string ins_id_;
  std::unordered_multimap<uint16_t, FeatureKey> feas;

  RecordCandidate& operator=(const Record& rec) {
    feas.clear();
    ins_id_ = rec.ins_id_;
    for (auto& fea : rec.uint64_feasigns_) {
      feas.insert({fea.slot(), fea.sign()});
    }
    return *this;
  }
};

class RecordCandidateList {
 public:
  RecordCandidateList() = default;
  RecordCandidateList(const RecordCandidateList&) = delete;
  RecordCandidateList& operator=(const RecordCandidateList&) = delete;

  void ReSize(size_t length);

  void ReInit();

  void AddAndGet(const Record& record, RecordCandidate* result);

 private:
  size_t _capacity = 0;
  std::mutex _mutex;
  bool _full = false;
  size_t _cur_size = 0;
  size_t _total_size = 0;
  std::vector<RecordCandidate> _candidate_list;
X
xiexionghang 已提交
477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
};

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const FeatureKey& fk) {
  ar << fk.uint64_feasign_;
  ar << fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           FeatureKey& fk) {
  ar >> fk.uint64_feasign_;
  ar >> fk.float_feasign_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const FeatureItem& fi) {
  ar << fi.sign();
  ar << fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           FeatureItem& fi) {
  ar >> fi.sign();
  ar >> fi.slot();
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator<<(paddle::framework::Archive<AR>& ar,
                                           const Record& r) {
  ar << r.uint64_feasigns_;
  ar << r.float_feasigns_;
  ar << r.ins_id_;
  return ar;
}

template <class AR>
paddle::framework::Archive<AR>& operator>>(paddle::framework::Archive<AR>& ar,
                                           Record& r) {
  ar >> r.uint64_feasigns_;
  ar >> r.float_feasigns_;
  ar >> r.ins_id_;
  return ar;
}

// This DataFeed is used to feed multi-slot type data.
// The format of multi-slot type data:
//   [n feasign_0 feasign_1 ... feasign_n]*
class MultiSlotDataFeed
    : public PrivateQueueDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotDataFeed() {}
  virtual ~MultiSlotDataFeed() {}
  virtual void Init(const DataFeedDesc& data_feed_desc);
  virtual bool CheckFile(const char* filename);

 protected:
  virtual void ReadThread();
  virtual void AddInstanceToInsVec(std::vector<MultiSlotType>* vec_ins,
                                   const std::vector<MultiSlotType>& instance,
                                   int index);
  virtual bool ParseOneInstance(std::vector<MultiSlotType>* instance);
  virtual bool ParseOneInstanceFromPipe(std::vector<MultiSlotType>* instance);
  virtual void PutToFeedVec(const std::vector<MultiSlotType>& ins_vec);
};

class MultiSlotInMemoryDataFeed : public InMemoryDataFeed<Record> {
 public:
  MultiSlotInMemoryDataFeed() {}
  virtual ~MultiSlotInMemoryDataFeed() {}
  virtual void Init(const DataFeedDesc& data_feed_desc);

 protected:
  virtual bool ParseOneInstance(Record* instance);
  virtual bool ParseOneInstanceFromPipe(Record* instance);
  virtual void PutToFeedVec(const std::vector<Record>& ins_vec);
};

#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
template <typename T>
class PrivateInstantDataFeed : public DataFeed {
 public:
  PrivateInstantDataFeed() {}
  virtual ~PrivateInstantDataFeed() {}
  void Init(const DataFeedDesc& data_feed_desc) override;
  bool Start() override { return true; }
  int Next() override;

 protected:
  // The batched data buffer
  std::vector<MultiSlotType> ins_vec_;

  // This function is used to preprocess with a given filename, e.g. open it or
  // mmap
  virtual bool Preprocess(const std::string& filename) = 0;

  // This function is used to postprocess system resource such as closing file
  // NOTICE: Ensure that it is safe to call before Preprocess
  virtual bool Postprocess() = 0;

  // The reading and parsing method.
  virtual bool ParseOneMiniBatch() = 0;

  // This function is used to put ins_vec to feed_vec
  virtual void PutToFeedVec();
};

class MultiSlotFileInstantDataFeed
    : public PrivateInstantDataFeed<std::vector<MultiSlotType>> {
 public:
  MultiSlotFileInstantDataFeed() {}
  virtual ~MultiSlotFileInstantDataFeed() {}

 protected:
  int fd_{-1};
  char* buffer_{nullptr};
  size_t end_{0};
  size_t offset_{0};

  bool Preprocess(const std::string& filename) override;

  bool Postprocess() override;

  bool ParseOneMiniBatch() override;
};
#endif

}  // namespace framework
}  // namespace paddle