selected_rows.cc 7.3 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "paddle/fluid/framework/selected_rows.h"

namespace paddle {
namespace framework {

struct ReAllocateVisitor {
  ReAllocateVisitor(const framework::DDim& dims, framework::Tensor* tensor)
      : dims_(dims), tensor_(tensor) {}

  template <typename T>
  void operator()() const {
    framework::Tensor cpu_tensor;
    platform::CPUPlace cpu;
    T* ptr = cpu_tensor.mutable_data<T>(dims_, cpu);
    const T* old_ptr =
        tensor_->memory_size() == 0 ? nullptr : tensor_->data<T>();
    if (old_ptr != nullptr) {
      std::copy(old_ptr, old_ptr + tensor_->numel(), ptr);
    }
    tensor_->ShareDataWith(cpu_tensor);
  }

  framework::DDim dims_;
  framework::Tensor* tensor_;
};

struct TensorCopyVisitor {
  TensorCopyVisitor(framework::Tensor* dst, int64_t dst_offset,
                    const framework::Tensor src, int64_t src_offset,
                    int64_t size)
      : dst_(dst),
        dst_offset_(dst_offset),
        src_(src),
        src_offset_(src_offset),
        size_(size) {}

  template <typename T>
  void apply() const {
    // TODO(Yancey1989): support other place
    platform::CPUPlace cpu;
    memory::Copy(cpu, dst_->mutable_data<T>(cpu) + dst_offset_, cpu,
                 src_.data<T>() + src_offset_, size_ * sizeof(T));
  }

  framework::Tensor* dst_;
  int64_t dst_offset_;
  framework::Tensor src_;
  int64_t src_offset_;
  int64_t size_;
};

struct TensorFillVisitor {
  TensorFillVisitor(framework::Tensor* dst, int64_t dst_offset, int64_t size,
                    float value)
      : dst_(dst), dst_offset_(dst_offset), size_(size) {}

  template <typename T>
  void apply() const {
    // TODO(qiao): support other place
    platform::CPUPlace cpu;
    auto* tensor_data = dst_->mutable_data<T>(cpu);
    auto* start = tensor_data + dst_offset_;
    auto* end = start + size_;
    std::fill(start, end, static_cast<T>(0.0));
  }

  framework::Tensor* dst_;
  int64_t dst_offset_;
  int64_t size_;
};

void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
                       const platform::DeviceContext& dev_ctx) {
  {  // the 1st field, uint32_t version
    constexpr uint32_t version = 0;
    os.write(reinterpret_cast<const char*>(&version), sizeof(version));
  }
  {
    // the 2st field, rows information
    auto& rows = selected_rows.rows();
    uint64_t size = rows.size();
    os.write(reinterpret_cast<const char*>(&size), sizeof(size));
    for (uint64_t i = 0; i < size; ++i) {
      os.write(reinterpret_cast<const char*>(&rows[i]), sizeof(rows[i]));
    }
  }
  {
    // the 3st field, the height of SelectedRows
    int64_t height = selected_rows.height();
    os.write(reinterpret_cast<const char*>(&height), sizeof(height));
  }
  // the 4st field, Tensor data
  TensorToStream(os, selected_rows.value(), dev_ctx);
}

void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
                           const platform::DeviceContext& dev_ctx) {
  {
    // the 1st field, unit32_t version for SelectedRows
    uint32_t version;
    is.read(reinterpret_cast<char*>(&version), sizeof(version));
    PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
  }
  {
    // the 2st field, rows information
    uint64_t size;
    is.read(reinterpret_cast<char*>(&size), sizeof(size));
    auto& rows = *selected_rows->mutable_rows();
    rows.resize(size);
    for (uint64_t i = 0; i < size; ++i) {
      is.read(reinterpret_cast<char*>(&rows[i]), sizeof(int64_t));
    }
  }
  {
    // the 3st field, the height of the SelectedRows
    int64_t height;
    is.read(reinterpret_cast<char*>(&height), sizeof(int64_t));
    selected_rows->set_height(height);
  }
  // the 4st field, tensor which contains the data
  TensorFromStream(is, selected_rows->mutable_value(), dev_ctx);
}

bool SelectedRows::HasKey(int64_t key) const {
  return std::find(rows_.begin(), rows_.end(), key) == rows_.end() ? false
                                                                   : true;
}

int64_t SelectedRows::AutoGrownIndex(int64_t key, bool auto_grown,
                                     bool is_test) {
  if (is_test) {
    auto iter = id_to_index_.find(key);
    if (iter == id_to_index_.end()) {
      return -1;
    } else {
      return iter->second;
    }
  }

  rwlock_->RDLock();
  auto iter = id_to_index_.find(key);
  if (iter == id_to_index_.end()) {
    rwlock_->UNLock();
    if (!auto_grown) {
      PADDLE_THROW("key %d not found", key);
    }
    rwlock_->WRLock();
    auto map_size = id_to_index_.size();
    auto vector_size = rows_.size();
    if (map_size != vector_size) {
      rwlock_->UNLock();
      PADDLE_THROW(
          "id_to_index_ size %d should have the same size with rows_ %d",
          map_size, vector_size);
    }
    auto write_iter = id_to_index_.find(key);
    if (write_iter == id_to_index_.end()) {
      int row_num = rows_.size();
      if (row_num == value_->dims()[0]) {
        rwlock_->UNLock();
        PADDLE_THROW("selected rows is full, then length exceed %d", row_num);
      }
      // key logic to put a key into id_to_index_
      rows_.push_back(key);
      auto index = static_cast<int64_t>(rows_.size() - 1);
      id_to_index_[key] = index;
      rwlock_->UNLock();
      return index;
    } else {
      auto index = write_iter->second;
      rwlock_->UNLock();
      return index;
    }
  } else {
    auto index = iter->second;
    rwlock_->UNLock();
    return index;
  }
}

void SelectedRows::SyncIndex() {
  rwlock_->WRLock();
  id_to_index_.clear();
  for (size_t i = 0; i < rows_.size(); ++i) {
    id_to_index_[rows_[i]] = i;
  }
  rwlock_->UNLock();
}

void SelectedRows::Get(const framework::Tensor& ids, framework::Tensor* value,
                       bool auto_grown, bool is_test) {
  PADDLE_ENFORCE(value->IsInitialized(),
                 "The value tensor should be initialized.");
  if (ids.numel() == 0) {
    VLOG(3) << "keys is empty, please check data!";
  } else {
    int64_t value_width = value_->numel() / value_->dims()[0];
    PADDLE_ENFORCE_EQ(value_width, value->numel() / value->dims()[0],
                      "output tensor should have the same shape with table "
                      "except the dims[0].");
    for (int i = 0; i < ids.numel(); ++i) {
      auto id = ids.data<int64_t>()[i];
      int64_t index = AutoGrownIndex(id, auto_grown, is_test);
      if (index < 0) {
        VLOG(5) << "id " << id << " not in the table, return 0";
        framework::VisitDataType(
            value_->type(),
            TensorFillVisitor(value, i * value_width, value_width, 0.0));
      } else {
        framework::VisitDataType(
            value_->type(),
            TensorCopyVisitor(value, i * value_width, *value_.get(),
                              index * value_width, value_width));
      }
    }
  }
}

}  // namespace framework
}  // namespace paddle