dataset.py 7.5 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xiexionghang 已提交
15
import abc
X
xiexionghang 已提交
16 17
import time
import datetime
T
tangwei 已提交
18

X
xiexionghang 已提交
19
import paddle.fluid as fluid
T
tangwei 已提交
20

T
tangwei 已提交
21 22
from fleet_rec.core.utils import fs as fs
from fleet_rec.core.utils import util as util
T
tangwei 已提交
23

X
xiexionghang 已提交
24 25

class Dataset(object):
X
xiexionghang 已提交
26
    """
X
xiexionghang 已提交
27
    Dataset Base
X
xiexionghang 已提交
28 29
    """
    __metaclass__ = abc.ABCMeta
T
tangwei 已提交
30

X
xiexionghang 已提交
31
    def __init__(self, config):
X
xiexionghang 已提交
32 33
        """ 
        """
X
xiexionghang 已提交
34 35
        self._datasets = {}
        self._config = config
T
tangwei 已提交
36

X
xiexionghang 已提交
37
    @abc.abstractmethod
X
xiexionghang 已提交
38
    def check_ready(self, params):
X
xiexionghang 已提交
39 40 41 42 43
        """
        check data ready or not
        Return:
            True/False
        """
X
xiexionghang 已提交
44 45
        pass

X
xiexionghang 已提交
46
    @abc.abstractmethod
T
tangwei 已提交
47
    def load_dataset(self, params):
X
xiexionghang 已提交
48
        """R
X
xiexionghang 已提交
49
        """
X
xiexionghang 已提交
50
        pass
T
tangwei 已提交
51

X
xiexionghang 已提交
52
    @abc.abstractmethod
T
tangwei 已提交
53
    def preload_dataset(self, params):
X
xiexionghang 已提交
54
        """R
X
xiexionghang 已提交
55
        """
X
xiexionghang 已提交
56
        pass
T
tangwei 已提交
57

X
xiexionghang 已提交
58
    @abc.abstractmethod
T
tangwei 已提交
59
    def release_dataset(self, params):
X
xiexionghang 已提交
60
        """R 
X
xiexionghang 已提交
61
        """
X
xiexionghang 已提交
62 63
        pass

X
xiexionghang 已提交
64

X
xiexionghang 已提交
65
class TimeSplitDataset(Dataset):
X
xiexionghang 已提交
66 67 68
    """
    Dataset with time split dir.  root_path/$DAY/$HOUR
    """
T
tangwei 已提交
69

X
xiexionghang 已提交
70
    def __init__(self, config):
X
xiexionghang 已提交
71 72 73
        """
        init data root_path, time_split_interval, data_path_format
        """
X
xiexionghang 已提交
74 75
        Dataset.__init__(self, config)
        if 'data_donefile' not in config or config['data_donefile'] is None:
T
tangwei 已提交
76
            config['data_donefile'] = config['data_path'] + "/to.hadoop.done"
T
tangwei 已提交
77
        self._path_generator = util.PathGenerator({'templates': [
T
tangwei 已提交
78 79
            {'name': 'data_path', 'template': config['data_path']},
            {'name': 'donefile_path', 'template': config['data_donefile']}
X
xiexionghang 已提交
80
        ]})
T
tangwei 已提交
81
        self._split_interval = config['split_interval']  # data split N mins per dir
T
tangwei 已提交
82
        self._data_file_handler = fs.FileHandler(config)
X
xiexionghang 已提交
83 84

    def _format_data_time(self, daytime_str, time_window_mins):
X
xiexionghang 已提交
85
        """ """
T
tangwei 已提交
86
        data_time = util.make_datetime(daytime_str)
X
xiexionghang 已提交
87 88 89 90 91 92 93 94 95
        mins_of_day = data_time.hour * 60 + data_time.minute
        begin_stage = mins_of_day / self._split_interval
        end_stage = (mins_of_day + time_window_mins) / self._split_interval
        if begin_stage == end_stage and mins_of_day % self._split_interval != 0:
            return None, 0

        if mins_of_day % self._split_interval != 0:
            skip_mins = self._split_interval - (mins_of_day % self._split_interval)
            data_time = data_time + datetime.timedelta(minutes=skip_mins)
T
tangwei 已提交
96
            time_window_mins = time_window_mins - skip_mins
X
xiexionghang 已提交
97
        return data_time, time_window_mins
T
tangwei 已提交
98

X
xiexionghang 已提交
99
    def check_ready(self, daytime_str, time_window_mins):
X
xiexionghang 已提交
100 101 102 103 104 105 106 107
        """
        data in [daytime_str, daytime_str + time_window_mins] is ready or not
        Args:
            daytime_str: datetime with str format, such as "202001122200" meanings "2020-01-12 22:00"
            time_window_mins(int): from daytime_str to daytime_str + time_window_mins
        Return:
            True/False
        """
X
xiexionghang 已提交
108
        is_ready = True
X
xiexionghang 已提交
109
        data_time, windows_mins = self._format_data_time(daytime_str, time_window_mins)
X
xiexionghang 已提交
110
        while time_window_mins > 0:
T
tangwei 已提交
111
            file_path = self._path_generator.generate_path('donefile_path', {'time_format': data_time})
X
xiexionghang 已提交
112 113 114 115 116 117
            if not self._data_file_handler.is_exist(file_path):
                is_ready = False
                break
            time_window_mins = time_window_mins - self._split_interval
            data_time = data_time + datetime.timedelta(minutes=self._split_interval)
        return is_ready
T
tangwei 已提交
118

X
xiexionghang 已提交
119
    def get_file_list(self, daytime_str, time_window_mins, node_num=1, node_idx=0):
X
xiexionghang 已提交
120 121 122 123 124 125 126 127 128 129
        """
        data in  [daytime_str, daytime_str + time_window_mins], random shard to node_num, return shard[node_idx]
        Args:
            daytime_str: datetime with str format, such as "202001122200" meanings "2020-01-12 22:00"
            time_window_mins(int): from daytime_str to daytime_str + time_window_mins
            node_num(int): data split shard num
            node_idx(int): shard_idx
        Return:
            list, data_shard[node_idx]
        """
X
xiexionghang 已提交
130
        data_file_list = []
X
xiexionghang 已提交
131
        data_time, windows_mins = self._format_data_time(daytime_str, time_window_mins)
X
xiexionghang 已提交
132
        while time_window_mins > 0:
T
tangwei 已提交
133
            file_path = self._path_generator.generate_path('data_path', {'time_format': data_time})
X
xiexionghang 已提交
134 135 136 137 138 139 140 141 142
            sub_file_list = self._data_file_handler.ls(file_path)
            for sub_file in sub_file_list:
                sub_file_name = self._data_file_handler.get_file_name(sub_file)
                if not sub_file_name.startswith(self._config['filename_prefix']):
                    continue
                if hash(sub_file_name) % node_num == node_idx:
                    data_file_list.append(sub_file)
            time_window_mins = time_window_mins - self._split_interval
            data_time = data_time + datetime.timedelta(minutes=self._split_interval)
T
tangwei 已提交
143 144
        return data_file_list

X
xiexionghang 已提交
145

X
xiexionghang 已提交
146
class FluidTimeSplitDataset(TimeSplitDataset):
X
xiexionghang 已提交
147 148 149
    """
    A Dataset with time split for PaddleFluid
    """
T
tangwei 已提交
150

X
xiexionghang 已提交
151
    def __init__(self, config):
X
xiexionghang 已提交
152
        """ """
X
xiexionghang 已提交
153
        TimeSplitDataset.__init__(self, config)
T
tangwei 已提交
154

X
xiexionghang 已提交
155
    def _alloc_dataset(self, file_list):
X
xiexionghang 已提交
156
        """ """
X
xiexionghang 已提交
157 158 159 160 161 162 163
        dataset = fluid.DatasetFactory().create_dataset(self._config['dataset_type'])
        dataset.set_batch_size(self._config['batch_size'])
        dataset.set_thread(self._config['load_thread'])
        dataset.set_hdfs_config(self._config['fs_name'], self._config['fs_ugi'])
        dataset.set_pipe_command(self._config['data_converter'])
        dataset.set_filelist(file_list)
        dataset.set_use_var(self._config['data_vars'])
T
tangwei 已提交
164 165
        # dataset.set_fleet_send_sleep_seconds(2)
        # dataset.set_fleet_send_batch_size(80000)
X
xiexionghang 已提交
166 167
        return dataset

X
xiexionghang 已提交
168
    def load_dataset(self, params):
T
tangwei 已提交
169
        """ """
X
xiexionghang 已提交
170 171 172 173 174 175 176 177 178 179 180 181
        begin_time = params['begin_time']
        windown_min = params['time_window_min']
        if begin_time not in self._datasets:
            while self.check_ready(begin_time, windown_min) == False:
                print("dataset not ready, time:" + begin_time)
                time.sleep(30)
            file_list = self.get_file_list(begin_time, windown_min, params['node_num'], params['node_idx'])
            self._datasets[begin_time] = self._alloc_dataset(file_list)
            self._datasets[begin_time].load_into_memory()
        else:
            self._datasets[begin_time].wait_preload_done()
        return self._datasets[begin_time]
T
tangwei 已提交
182 183

    def preload_dataset(self, params):
X
xiexionghang 已提交
184
        """ """
X
xiexionghang 已提交
185 186 187 188 189 190 191 192 193 194
        begin_time = params['begin_time']
        windown_min = params['time_window_min']
        if begin_time not in self._datasets:
            if self.check_ready(begin_time, windown_min):
                file_list = self.get_file_list(begin_time, windown_min, params['node_num'], params['node_idx'])
                self._datasets[begin_time] = self._alloc_dataset(file_list)
                self._datasets[begin_time].preload_into_memory(self._config['preload_thread'])
                return True
        return False

T
tangwei 已提交
195
    def release_dataset(self, params):
X
xiexionghang 已提交
196
        """ """
X
xiexionghang 已提交
197 198 199 200
        begin_time = params['begin_time']
        windown_min = params['time_window_min']
        if begin_time in self._datasets:
            self._datasets[begin_time].release_memory()