dist_multi_trainer.cc 6.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include <string>
#include <vector>
17
#include "io/fs.h"
X
xiexionghang 已提交
18 19 20 21 22 23 24 25
#include "paddle/fluid/framework/data_feed_factory.h"
#include "paddle/fluid/framework/data_set.h"
#include "paddle/fluid/framework/device_worker_factory.h"
#include "paddle/fluid/framework/trainer.h"

namespace paddle {
namespace framework {

26 27
void DistMultiTrainer::Initialize(const TrainerDesc &trainer_desc,
                                  Dataset *dataset) {
X
xiexionghang 已提交
28 29 30
  thread_num_ = trainer_desc.thread_num();
  SetDataset(dataset);

31 32 33 34 35 36
  dump_fields_path_ = trainer_desc.dump_fields_path();
  dump_converter_ = trainer_desc.dump_converter();
  need_dump_field_ = false;
  if (trainer_desc.dump_fields_size() != 0 && dump_fields_path_ != "") {
    need_dump_field_ = true;
  }
37
  user_define_dump_filename_ = trainer_desc.user_define_dump_filename();
38 39 40 41 42 43 44 45
  if (need_dump_field_) {
    auto &file_list = dataset->GetFileList();
    if (file_list.size() == 0) {
      need_dump_field_ = false;
    }
  }
  mpi_rank_ = trainer_desc.mpi_rank() / 2;
  const std::vector<paddle::framework::DataFeed *> readers =
X
xiexionghang 已提交
46 47 48 49
      dataset->GetReaders();

  thread_num_ = readers.size();
  workers_.resize(thread_num_);
50 51 52 53 54
  for (int i = 0; i < trainer_desc.downpour_param().stat_var_names_size();
       i++) {
    need_merge_var_names_.push_back(
        trainer_desc.downpour_param().stat_var_names(i));
  }
X
xiexionghang 已提交
55 56 57 58 59 60 61

  for (int i = 0; i < thread_num_; ++i) {
    workers_[i] = DeviceWorkerFactory::CreateDeviceWorker(
        trainer_desc.device_worker_name());
    workers_[i]->SetDeviceIndex(i);
    workers_[i]->SetDataFeed(readers[i]);
    workers_[i]->Initialize(trainer_desc);
62
    workers_[i]->SetNeedDump(need_dump_field_);
X
xiexionghang 已提交
63 64 65 66 67 68 69 70 71
  }

  VLOG(3) << "going to initialize pull dense worker";
  pull_dense_worker_ = PullDenseWorker::GetInstance();
  pull_dense_worker_->Initialize(trainer_desc);
  VLOG(3) << "initialize pull dense worker";
  SetDebug(trainer_desc.debug());
}

72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
void DistMultiTrainer::DumpWork() {
#ifdef _LINUX
  while (1) {
    std::string out_str;
    if (!queue_->Get(out_str)) {
      break;
    }
    size_t write_count =
        fwrite_unlocked(out_str.data(), 1, out_str.length(), fp_.get());
    if (write_count != out_str.length()) {
      VLOG(3) << "dump text failed";
      continue;
    }
    write_count = fwrite_unlocked("\n", 1, 1, fp_.get());
    if (write_count != 1) {
      VLOG(3) << "dump text failed";
      continue;
    }
  }
#endif
}

void DistMultiTrainer::InitDumpEnv() {
  queue_ = paddle::framework::MakeChannel<std::string>();
  int err_no = 0;
  std::string path = string::format_string(
      "%s/part-%03d", dump_fields_path_.c_str(), mpi_rank_);

100 101 102 103 104
  if (user_define_dump_filename_ != "") {
    path = string::format_string("%s/part-%s", dump_fields_path_.c_str(),
                                 user_define_dump_filename_.c_str());
  }

105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
  fp_ = fs_open_write(path, &err_no, dump_converter_);
  for (int i = 0; i < thread_num_; ++i) {
    workers_[i]->SetChannelWriter(queue_.get());
  }
  dump_thread_ = std::thread(&DistMultiTrainer::DumpWork, this);
}

void DistMultiTrainer::FinalizeDumpEnv() {
  queue_->Close();
  dump_thread_.join();
  queue_.reset();
}

void DistMultiTrainer::InitOtherEnv(const ProgramDesc &main_program) {
  if (need_dump_field_) {
    InitDumpEnv();
  }
X
xiexionghang 已提交
122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
  pull_dense_worker_->SetRootScope(root_scope_);
  pull_dense_worker_->Start();
  VLOG(3) << "init other env done.";
}

void DistMultiTrainer::Run() {
  for (int thidx = 0; thidx < thread_num_; ++thidx) {
    if (!debug_) {
      threads_.push_back(
          std::thread(&DeviceWorker::TrainFiles, workers_[thidx].get()));
    } else {
      threads_.push_back(std::thread(&DeviceWorker::TrainFilesWithProfiler,
                                     workers_[thidx].get()));
    }
  }
}

void DistMultiTrainer::Finalize() {
140
  for (auto &th : threads_) {
X
xiexionghang 已提交
141 142
    th.join();
  }
143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
  for (int i = 0; i < need_merge_var_names_.size(); i++) {
    Variable *root_var = root_scope_->FindVar(need_merge_var_names_[i]);
    if (root_var == nullptr) {
      continue;
    }
    LoDTensor *root_tensor = root_var->GetMutable<LoDTensor>();
    for (int j = 1; j < thread_num_; j++) {
      Scope *cur_thread_scope = workers_[j]->GetThreadScope();
      Variable *thread_var =
          cur_thread_scope->FindVar(need_merge_var_names_[i]);
      LoDTensor *thread_tensor = thread_var->GetMutable<LoDTensor>();
      if (root_tensor->numel() != thread_tensor->numel()) {
        continue;
      }
#define MergeCallback(cpp_type, proto_type)                                    \
  do {                                                                         \
    if (root_tensor->type() == proto_type) {                                   \
      if (thread_tensor->type() != proto_type) {                               \
        VLOG(0) << "Error: thread id=" << j << ", need_merge_var_names_[" << i \
                << "] " << need_merge_var_names_[i]                            \
                << ", root tensor type=" << root_tensor->type()                \
                << ", thread tensor type=" << thread_tensor->type();           \
        exit(-1);                                                              \
      }                                                                        \
      MergeToRootScope<cpp_type>(root_tensor, thread_tensor);                  \
    }                                                                          \
  } while (0)
      _ForEachDataType_(MergeCallback);
    }
  }

  if (need_dump_field_) {
    FinalizeDumpEnv();
  }
X
xiexionghang 已提交
177 178
  pull_dense_worker_->Stop();
  root_scope_->DropKids();
179 180 181 182

  // flush local client push queue
  auto fleet_ptr_ = FleetWrapper::GetInstance();
  fleet_ptr_->ClientFlush();
X
xiexionghang 已提交
183 184
}

185 186 187 188 189 190 191 192 193
template <typename T>
void DistMultiTrainer::MergeToRootScope(LoDTensor *root_tensor,
                                        LoDTensor *tensor) {
  T *root_data = root_tensor->data<T>();
  T *data = tensor->data<T>();
  for (int i = 0; i < tensor->numel(); i++) {
    root_data[i] += data[i];
  }
}
X
xiexionghang 已提交
194 195
}  // end namespace framework
}  // end namespace paddle