tester_helper.h 26.5 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <gtest/gtest.h>

#include <algorithm>
#include <memory>
#include <string>
#include <thread>  // NOLINT
#include <unordered_map>
#include <vector>
#ifdef WITH_GPERFTOOLS
#include <gperftools/profiler.h>
#endif
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
#include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/inference/analysis/analyzer.h"
#include "paddle/fluid/inference/analysis/ut_helper.h"
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
#include "paddle/fluid/inference/tests/api/config_printer.h"
#include "paddle/fluid/inference/tests/test_helper.h"
#include "paddle/fluid/inference/utils/benchmark.h"
#include "paddle/fluid/platform/profiler.h"

DEFINE_string(model_name, "", "model name");
DEFINE_string(infer_model, "", "model path");
DEFINE_string(infer_data, "", "data file");
DEFINE_string(refer_result, "", "reference result for comparison");
DEFINE_int32(batch_size, 1, "batch size");
DEFINE_int32(warmup_batch_size, 100, "batch size for quantization warmup");
// setting iterations to 0 means processing the whole dataset
DEFINE_int32(iterations, 0, "number of batches to process");
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
DEFINE_int32(num_threads, 1, "Running the inference program in multi-threads.");
DEFINE_bool(use_analysis, true,
            "Running the inference program in analysis mode.");
DEFINE_bool(record_benchmark, false,
            "Record benchmark after profiling the model");
DEFINE_double(accuracy, 1e-3, "Result Accuracy.");
DEFINE_double(quantized_accuracy, 1e-2, "Result Quantized Accuracy.");
DEFINE_bool(zero_copy, false, "Use ZeroCopy to speedup Feed/Fetch.");
DEFINE_bool(warmup, false,
            "Use warmup to calculate elapsed_time more accurately. "
            "To reduce CI time, it sets false in default.");

DECLARE_bool(profile);
DECLARE_int32(paddle_num_threads);

namespace paddle {
namespace inference {

using paddle::framework::proto::VarType;

template <typename T>
constexpr paddle::PaddleDType GetPaddleDType();

template <>
constexpr paddle::PaddleDType GetPaddleDType<int64_t>() {
  return paddle::PaddleDType::INT64;
}

template <>
constexpr paddle::PaddleDType GetPaddleDType<float>() {
  return paddle::PaddleDType::FLOAT32;
}

void PrintConfig(const PaddlePredictor::Config *config, bool use_analysis) {
  const auto *analysis_config =
      reinterpret_cast<const AnalysisConfig *>(config);
  if (use_analysis) {
    LOG(INFO) << *analysis_config;
    return;
  }
  LOG(INFO) << analysis_config->ToNativeConfig();
}

// Compare result between two PaddleTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<PaddleTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    size_t ref_size = VecReduceToInt(ref_out.shape);
    EXPECT_GT(size, 0UL);
    EXPECT_EQ(size, ref_size);
    EXPECT_EQ(out.dtype, ref_out.dtype);
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = static_cast<float *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = static_cast<int32_t *>(ref_out.data.data());
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
    }
  }
}

// Compare result between a PaddleTensor and a ZeroCopyTensor
void CompareResult(const std::vector<PaddleTensor> &outputs,
                   const std::vector<ZeroCopyTensor> &ref_outputs) {
  EXPECT_GT(outputs.size(), 0UL);
  EXPECT_EQ(outputs.size(), ref_outputs.size());
  for (size_t i = 0; i < outputs.size(); i++) {
    auto &out = outputs[i];
    auto &ref_out = ref_outputs[i];
    size_t size = VecReduceToInt(out.shape);
    EXPECT_GT(size, 0UL);
    int ref_size = 0;  // this is the number of elements not memory size
    PaddlePlace place;
    switch (out.dtype) {
      case PaddleDType::INT64: {
        int64_t *pdata = static_cast<int64_t *>(out.data.data());
        int64_t *pdata_ref = ref_out.data<int64_t>(&place, &ref_size);
        EXPECT_EQ(size, static_cast<size_t>(ref_size));
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
      case PaddleDType::FLOAT32: {
        float *pdata = static_cast<float *>(out.data.data());
        float *pdata_ref = ref_out.data<float>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          CHECK_LE(std::abs(pdata_ref[j] - pdata[j]), FLAGS_accuracy);
        }
        break;
      }
      case PaddleDType::INT32: {
        int32_t *pdata = static_cast<int32_t *>(out.data.data());
        int32_t *pdata_ref = ref_out.data<int32_t>(&place, &ref_size);
        EXPECT_EQ(size, ref_size);
        for (size_t j = 0; j < size; ++j) {
          EXPECT_EQ(pdata_ref[j], pdata[j]);
        }
        break;
      }
    }
  }
}

std::unique_ptr<PaddlePredictor> CreateTestPredictor(
    const PaddlePredictor::Config *config, bool use_analysis = true) {
  const auto *analysis_config =
      reinterpret_cast<const AnalysisConfig *>(config);
  if (use_analysis) {
    return CreatePaddlePredictor<AnalysisConfig>(*analysis_config);
  }
  auto native_config = analysis_config->ToNativeConfig();
  return CreatePaddlePredictor<NativeConfig>(native_config);
}

size_t GetSize(const PaddleTensor &out) { return VecReduceToInt(out.shape); }

std::unordered_map<std::string, int> GetFuseStatis(PaddlePredictor *predictor,
                                                   int *num_ops) {
  std::unordered_map<std::string, int> res;
  auto *analysis_predictor = static_cast<AnalysisPredictor *>(predictor);
  auto *fusion_status =
      analysis_predictor->analysis_argument().fusion_statis_ptr();
  if (!fusion_status) {
    return res;
  }
  for (auto &item : *fusion_status) {
    LOG(INFO) << "fused " << item.first << " " << item.second;
  }
  int num = 0;
  for (auto &node :
       analysis_predictor->analysis_argument().main_graph().Nodes()) {
    if (node->IsOp()) {
      ++num;
    }
  }
  *num_ops = num;
  return *fusion_status;
}

void SetFakeImageInput(std::vector<std::vector<PaddleTensor>> *inputs,
                       const std::string &dirname, bool is_combined = true,
                       std::string model_filename = "model",
                       std::string params_filename = "params",
                       const std::vector<std::string> *feed_names = nullptr,
                       const int continuous_inuput_index = 0) {
  // Set fake_image_data
  PADDLE_ENFORCE_EQ(FLAGS_test_all_data, 0, "Only have single batch of data.");
  std::vector<std::vector<int64_t>> feed_target_shapes = GetFeedTargetShapes(
      dirname, is_combined, model_filename, params_filename);
  std::ostringstream os;
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    os << "feed target " << i << ": {" << feed_target_shapes[i][0];
    for (size_t j = 1; j < feed_target_shapes[i].size(); ++j) {
      os << ", " << feed_target_shapes[i][j];
    }
    os << "}\n";
  }
  LOG(INFO) << os.str();
  if (feed_names) {
    PADDLE_ENFORCE_EQ(feed_names->size(), feed_target_shapes.size());
  }
  std::vector<PaddleTensor> input_slots(feed_target_shapes.size());
  for (size_t i = 0; i < feed_target_shapes.size(); ++i) {
    const auto &feed_shape = feed_target_shapes[i];
    auto &input = input_slots[i];
    std::vector<int> shape({FLAGS_batch_size});
    for (size_t s = 1; s < feed_shape.size(); ++s) {
      shape.push_back(static_cast<int>(feed_shape[s]));
    }
    if (feed_names) {
      input.name = (*feed_names)[i];
    }
    input.shape = shape;
    input.dtype = PaddleDType::FLOAT32;
    size_t len = std::accumulate(shape.begin(), shape.end(), size_t{1},
                                 [](int a, int b) { return a * b; });
    input.data.Resize(len * sizeof(float));
    input.lod.assign({{0, static_cast<size_t>(FLAGS_batch_size)}});
    float *input_data = static_cast<float *>(input.data.data());
    // fill input data, for profile easily, do not use random data here.
    for (size_t j = 0; j < len; ++j) {
      *(input_data + j) =
          static_cast<float>((j + continuous_inuput_index) % len) / len;
    }
  }
  (*inputs).emplace_back(input_slots);
}

void GetInputPerBatch(const std::vector<std::vector<int64_t>> &in,
                      std::vector<std::vector<int64_t>> *out,
                      std::vector<size_t> *lod, size_t batch_iter,
                      size_t batch_end) {
  lod->clear();
  lod->push_back(0);
  for (auto it = in.begin() + batch_iter; it < in.begin() + batch_end; it++) {
    out->push_back(*it);
    lod->push_back(lod->back() + (*it).size());  // calculate lod
  }
}

void ConvertPaddleTensorToZeroCopyTensor(
    PaddlePredictor *predictor, const std::vector<PaddleTensor> &inputs) {
  for (size_t i = 0; i < inputs.size(); i++) {
    auto input = inputs[i];
    auto tensor = predictor->GetInputTensor(input.name);
    tensor->Reshape(input.shape);
    tensor->SetLoD({input.lod});
    if (input.dtype == PaddleDType::INT64) {
      ZeroCopyTensorAssignData<int64_t>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::FLOAT32) {
      ZeroCopyTensorAssignData<float>(tensor.get(), input.data);
    } else if (input.dtype == PaddleDType::INT32) {
      ZeroCopyTensorAssignData<int32_t>(tensor.get(), input.data);
    } else {
      LOG(ERROR) << "unsupported feed type " << input.dtype;
    }
  }
}

void PredictionWarmUp(PaddlePredictor *predictor,
                      const std::vector<std::vector<PaddleTensor>> &inputs,
                      std::vector<std::vector<PaddleTensor>> *outputs,
                      int num_threads, int tid,
                      const VarType::Type data_type = VarType::FP32) {
  int batch_size = FLAGS_batch_size;
  LOG(INFO) << "Running thread " << tid << ", warm up run...";
  if (FLAGS_zero_copy) {
    ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[0]);
  }
  outputs->resize(1);
  Timer warmup_timer;
  warmup_timer.tic();
  if (!FLAGS_zero_copy) {
    predictor->Run(inputs[0], &(*outputs)[0], batch_size);
  } else {
    predictor->ZeroCopyRun();
  }
  PrintTime(batch_size, 1, num_threads, tid, warmup_timer.toc(), 1, data_type);
  if (FLAGS_profile) {
    paddle::platform::ResetProfiler();
  }
}

void PredictionRun(PaddlePredictor *predictor,
                   const std::vector<std::vector<PaddleTensor>> &inputs,
                   std::vector<std::vector<PaddleTensor>> *outputs,
                   int num_threads, int tid,
                   const VarType::Type data_type = VarType::FP32,
                   float *sample_latency = nullptr) {
  int num_times = FLAGS_repeat;
  int iterations = inputs.size();  // process the whole dataset ...
  if (FLAGS_iterations > 0 &&
      FLAGS_iterations < static_cast<int64_t>(inputs.size()))
    iterations =
        FLAGS_iterations;  // ... unless the number of iterations is set
  outputs->resize(iterations);
  LOG(INFO) << "Thread " << tid << ", number of threads " << num_threads
            << ", run " << num_times << " times...";
  Timer run_timer;
  double elapsed_time = 0;
#ifdef WITH_GPERFTOOLS
  ProfilerStart("paddle_inference.prof");
#endif
  int predicted_num = 0;
  if (!FLAGS_zero_copy) {
    for (int i = 0; i < iterations; i++) {
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->Run(inputs[i], &(*outputs)[i], FLAGS_batch_size);
      }
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
    }
  } else {
    for (int i = 0; i < iterations; i++) {
      ConvertPaddleTensorToZeroCopyTensor(predictor, inputs[i]);
      run_timer.tic();
      for (int j = 0; j < num_times; j++) {
        predictor->ZeroCopyRun();
      }
      elapsed_time += run_timer.toc();

      predicted_num += FLAGS_batch_size;
      if (predicted_num % 100 == 0) {
        LOG(INFO) << predicted_num << " samples";
      }
    }
  }

#ifdef WITH_GPERFTOOLS
  ProfilerStop();
#endif

  auto batch_latency = elapsed_time / (iterations * num_times);
  PrintTime(FLAGS_batch_size, num_times, num_threads, tid, batch_latency,
            iterations, data_type);

  if (sample_latency != nullptr)
    *sample_latency = batch_latency / FLAGS_batch_size;

  if (FLAGS_record_benchmark) {
    Benchmark benchmark;
    benchmark.SetName(FLAGS_model_name);
    benchmark.SetBatchSize(FLAGS_batch_size);
    benchmark.SetLatency(batch_latency);
    benchmark.PersistToFile("benchmark_record.txt");
  }
}

void TestOneThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    std::vector<std::vector<PaddleTensor>> *outputs, bool use_analysis = true,
    const VarType::Type data_type = VarType::FP32,
    float *sample_latency = nullptr) {
  auto predictor = CreateTestPredictor(config, use_analysis);
  if (FLAGS_warmup) {
    PredictionWarmUp(predictor.get(), inputs, outputs, 1, 0, data_type);
  }
  PredictionRun(predictor.get(), inputs, outputs, 1, 0, data_type,
                sample_latency);
}

void TestMultiThreadPrediction(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    std::vector<std::vector<PaddleTensor>> *outputs, int num_threads,
    bool use_analysis = true) {
  std::vector<std::thread> threads;
  std::vector<std::unique_ptr<PaddlePredictor>> predictors;
  predictors.emplace_back(CreateTestPredictor(config, use_analysis));
  for (int tid = 1; tid < num_threads; tid++) {
    predictors.emplace_back(predictors.front()->Clone());
  }

  for (int tid = 0; tid < num_threads; ++tid) {
    threads.emplace_back([&, tid]() {
      // Each thread should have local inputs and outputs.
      // The inputs of each thread are all the same.
      std::vector<std::vector<PaddleTensor>> outputs_tid;
      auto &predictor = predictors[tid];
      if (FLAGS_warmup) {
        PredictionWarmUp(predictor.get(), inputs, &outputs_tid, num_threads,
                         tid);
      }
      PredictionRun(predictor.get(), inputs, &outputs_tid, num_threads, tid);
    });
  }
  for (int i = 0; i < num_threads; ++i) {
    threads[i].join();
  }
}

void TestPrediction(const PaddlePredictor::Config *config,
                    const std::vector<std::vector<PaddleTensor>> &inputs,
                    std::vector<std::vector<PaddleTensor>> *outputs,
                    int num_threads, bool use_analysis = FLAGS_use_analysis) {
  PrintConfig(config, use_analysis);
  if (num_threads == 1) {
    TestOneThreadPrediction(config, inputs, outputs, use_analysis);
  } else {
    TestMultiThreadPrediction(config, inputs, outputs, num_threads,
                              use_analysis);
  }
}

void SummarizeAccuracy(float avg_acc1_fp32, float avg_acc1_int8) {
  LOG(INFO) << "--- Accuracy summary --- ";
  LOG(INFO) << "Accepted top1 accuracy drop threshold: "
            << FLAGS_quantized_accuracy
            << ". (condition: (FP32_top1_acc - INT8_top1_acc) <= threshold)";
  LOG(INFO) << "FP32: avg top1 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_fp32;
  LOG(INFO) << "INT8: avg top1 accuracy: " << std::fixed << std::setw(6)
            << std::setprecision(4) << avg_acc1_int8;
}

void SummarizePerformance(float sample_latency_fp32,
                          float sample_latency_int8) {
  // sample latency in ms
  auto throughput_fp32 = 1000.0 / sample_latency_fp32;
  auto throughput_int8 = 1000.0 / sample_latency_int8;
  LOG(INFO) << "--- Performance summary --- ";
  LOG(INFO) << "FP32: avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput_fp32
            << ", avg latency: " << sample_latency_fp32 << " ms";
  LOG(INFO) << "INT8: avg fps: " << std::fixed << std::setw(6)
            << std::setprecision(4) << throughput_int8
            << ", avg latency: " << sample_latency_int8 << " ms";
}

void CompareTopAccuracy(
    const std::vector<std::vector<PaddleTensor>> &output_slots_quant,
    const std::vector<std::vector<PaddleTensor>> &output_slots_ref) {
  if (output_slots_quant.size() == 0 || output_slots_ref.size() == 0)
    throw std::invalid_argument(
        "CompareTopAccuracy: output_slots vector is empty.");

  float total_accs1_quant{0};
  float total_accs1_ref{0};
  for (size_t i = 0; i < output_slots_quant.size(); ++i) {
    PADDLE_ENFORCE(output_slots_quant[i].size() >= 2UL);
    PADDLE_ENFORCE(output_slots_ref[i].size() >= 2UL);
    // second output: acc_top1
    if (output_slots_quant[i][1].lod.size() > 0 ||
        output_slots_ref[i][1].lod.size() > 0)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output has nonempty LoD.");
    if (output_slots_quant[i][1].dtype != paddle::PaddleDType::FLOAT32 ||
        output_slots_ref[i][1].dtype != paddle::PaddleDType::FLOAT32)
      throw std::invalid_argument(
          "CompareTopAccuracy: top1 accuracy output is of a wrong type.");
    total_accs1_quant +=
        *static_cast<float *>(output_slots_quant[i][1].data.data());
    total_accs1_ref +=
        *static_cast<float *>(output_slots_ref[i][1].data.data());
  }
  float avg_acc1_quant = total_accs1_quant / output_slots_quant.size();
  float avg_acc1_ref = total_accs1_ref / output_slots_ref.size();

  SummarizeAccuracy(avg_acc1_ref, avg_acc1_quant);
  CHECK_GT(avg_acc1_ref, 0.0);
  CHECK_GT(avg_acc1_quant, 0.0);
  CHECK_LE(avg_acc1_ref - avg_acc1_quant, FLAGS_quantized_accuracy);
}

void CompareDeterministic(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  int num_times = FLAGS_repeat;
  auto predictor = CreateTestPredictor(config, FLAGS_use_analysis);

  std::vector<PaddleTensor> warmup_outputs, outputs;
  // run num_times to Compare Deterministic Result.
  for (size_t j = 0; j < inputs.size(); j++) {
    // warmup run
    predictor->Run(inputs[j], &warmup_outputs, batch_size);
    for (int i = 0; i < num_times; i++) {
      predictor->Run(inputs[j], &outputs, batch_size);
      CompareResult(outputs, warmup_outputs);
    }
  }
}

void CompareNativeAndAnalysis(
    const PaddlePredictor::Config *config,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  PrintConfig(config, true);
  std::vector<std::vector<PaddleTensor>> native_outputs, analysis_outputs;
  TestOneThreadPrediction(config, inputs, &native_outputs, false);
  TestOneThreadPrediction(config, inputs, &analysis_outputs, true);
  PADDLE_ENFORCE(native_outputs.size() > 0, "Native output is empty.");
  PADDLE_ENFORCE(analysis_outputs.size() > 0, "Analysis output is empty.");
  CompareResult(analysis_outputs.back(), native_outputs.back());
}

void CompareQuantizedAndAnalysis(
    const AnalysisConfig *config, const AnalysisConfig *qconfig,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  PADDLE_ENFORCE_EQ(inputs[0][0].shape[0], FLAGS_batch_size,
                    "Input data has to be packed batch by batch.");
  LOG(INFO) << "FP32 & INT8 prediction run: batch_size " << FLAGS_batch_size
            << ", warmup batch size " << FLAGS_warmup_batch_size << ".";

  LOG(INFO) << "--- FP32 prediction start ---";
  auto *cfg = reinterpret_cast<const PaddlePredictor::Config *>(config);
  PrintConfig(cfg, true);
  std::vector<std::vector<PaddleTensor>> analysis_outputs;
  float sample_latency_fp32{-1};
  TestOneThreadPrediction(cfg, inputs, &analysis_outputs, true, VarType::FP32,
                          &sample_latency_fp32);

  LOG(INFO) << "--- INT8 prediction start ---";
  auto *qcfg = reinterpret_cast<const PaddlePredictor::Config *>(qconfig);
  PrintConfig(qcfg, true);
  std::vector<std::vector<PaddleTensor>> quantized_outputs;
  float sample_latency_int8{-1};
  TestOneThreadPrediction(qcfg, inputs, &quantized_outputs, true, VarType::INT8,
                          &sample_latency_int8);

  SummarizePerformance(sample_latency_fp32, sample_latency_int8);
  CompareTopAccuracy(quantized_outputs, analysis_outputs);
}

void CompareNativeAndAnalysis(
    PaddlePredictor *native_pred, PaddlePredictor *analysis_pred,
    const std::vector<std::vector<PaddleTensor>> &inputs) {
  int batch_size = FLAGS_batch_size;
  std::vector<PaddleTensor> native_outputs, analysis_outputs;
  native_pred->Run(inputs[0], &native_outputs, batch_size);
  analysis_pred->Run(inputs[0], &analysis_outputs, batch_size);
  CompareResult(analysis_outputs, native_outputs);
}

void CompareAnalysisAndZeroCopy(
    PaddlePredictor::Config *config, PaddlePredictor::Config *config1,
    const std::vector<std::vector<PaddleTensor>> &inputs,
    const std::vector<std::string> &outputs_name) {
  int batch_size = FLAGS_batch_size;
  // analysis
  std::vector<PaddleTensor> analysis_outputs;
  auto predictor = CreateTestPredictor(config, true);
  predictor->Run(inputs[0], &analysis_outputs, batch_size);
  // analysis + zero_copy
  std::vector<ZeroCopyTensor> zerocopy_outputs;
  reinterpret_cast<AnalysisConfig *>(config1)->SwitchUseFeedFetchOps(false);
  predictor = CreateTestPredictor(config1, true);
  ConvertPaddleTensorToZeroCopyTensor(predictor.get(), inputs[0]);
  predictor->ZeroCopyRun();
  for (size_t i = 0; i < outputs_name.size(); i++) {
    ZeroCopyTensor zerocopy_output =
        *predictor->GetOutputTensor(outputs_name[i]).get();
    zerocopy_outputs.emplace_back(zerocopy_output);
    LOG(INFO) << "ZeroCopy output: " << DescribeZeroCopyTensor(zerocopy_output);
  }
  // compare
  CompareResult(analysis_outputs, zerocopy_outputs);
}

void SaveOptimModel(AnalysisConfig *cfg, const std::string &dstPath) {
  auto predictor = CreateTestPredictor(
      reinterpret_cast<const PaddlePredictor::Config *>(cfg),
      FLAGS_use_analysis);
  (static_cast<AnalysisPredictor *>(predictor.get()))->SaveOptimModel(dstPath);
}

template <typename T>
std::string LoDTensorSummary(const framework::LoDTensor &tensor) {
  std::stringstream ss;
  ss << "\n---- tensor ---" << '\n';
  ss << "lod: [";
  for (const auto &level : tensor.lod()) {
    ss << "[ ";
    for (auto i : level) {
      ss << i << ", ";
    }
    ss << "]";
  }
  ss << "]\n";

  ss << "shape: [";
  int size = 1;
  for (int i = 0; i < tensor.dims().size(); i++) {
    int dim = tensor.dims()[i];
    ss << dim << ", ";
    size *= dim;
  }
  ss << "]\n";

  ss << "data: ";
  for (int i = 0; i < std::min(20, size); i++) {
    ss << tensor.data<T>()[i] << " ";
  }
  ss << "\n";

  return ss.str();
}

static bool CompareLoD(const framework::LoD &a, const framework::LoD &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("lod size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    auto &al = a[i];
    auto &bl = b[i];
    if (al.size() != bl.size()) {
      LOG(ERROR) << string::Sprintf("level size %d != %d", al.size(),
                                    bl.size());
      return false;
    }
  }
  return true;
}

static bool CompareShape(const std::vector<int64_t> &a,
                         const std::vector<int64_t> &b) {
  if (a.size() != b.size()) {
    LOG(ERROR) << string::Sprintf("shape size not match %d != %d", a.size(),
                                  b.size());
    return false;
  }
  for (size_t i = 0; i < a.size(); i++) {
    if (a[i] != b[i]) {
      LOG(ERROR) << string::Sprintf("shape %d-th element not match %d != %d", i,
                                    a[i], b[i]);
      return false;
    }
  }
  return true;
}

static bool CompareTensorData(const framework::LoDTensor &a,
                              const framework::LoDTensor &b) {
  auto a_shape = framework::vectorize(a.dims());
  auto b_shape = framework::vectorize(b.dims());
  size_t a_size = std::accumulate(a_shape.begin(), a_shape.end(), size_t{1},
                                  [](int a, int b) { return a * b; });
  size_t b_size = std::accumulate(b_shape.begin(), b_shape.end(), size_t{1},
                                  [](int a, int b) { return a * b; });
  if (a_size != b_size) {
    LOG(ERROR) << string::Sprintf("tensor data size not match, %d != %d",
                                  a_size, b_size);
  }

  for (size_t i = 0; i < a_size; i++) {
    if (a.type() == VarType::FP32) {
      const auto *a_data = a.data<float>();
      const auto *b_data = b.data<float>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    } else if (a.type() == VarType::INT64) {
      const auto *a_data = a.data<int64_t>();
      const auto *b_data = b.data<int64_t>();
      if (std::abs(a_data[i] - b_data[i]) > 1e-3) {
        LOG(ERROR) << string::Sprintf(
            "tensor data %d-th element not match, %f != %f", i, a_data[i],
            b_data[i]);
        return false;
      }
    }
  }

  return true;
}

static bool CompareTensor(const framework::LoDTensor &a,
                          const framework::LoDTensor &b) {
  if (!CompareLoD(a.lod(), b.lod())) {
    return false;
  }
  if (!CompareShape(framework::vectorize(a.dims()),
                    framework::vectorize(b.dims()))) {
    return false;
  }

  if (!CompareTensorData(a, b)) {
    return false;
  }

  return true;
}

}  // namespace inference
}  // namespace paddle