paddle_analysis_config.h 11.6 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once

#include <cassert>
#include <map>
#include <memory>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>

/*! \file */

// Here we include some header files with relative paths, for that in deploy,
// the abstract path of this header file will be changed.
#include "paddle_api.h"           // NOLINT
#include "paddle_pass_builder.h"  // NOLINT
#ifdef PADDLE_WITH_MKLDNN
#include "paddle_mkldnn_quantizer_config.h"  // NOLINT
#endif

namespace paddle {

class AnalysisPredictor;
struct MkldnnQuantizerConfig;

// NOTE WIP, not stable yet.
struct AnalysisConfig {
  AnalysisConfig() = default;
  explicit AnalysisConfig(const AnalysisConfig& other);
  explicit AnalysisConfig(const std::string& model_dir);
  explicit AnalysisConfig(const std::string& prog_file,
                          const std::string& params_file);
  enum class Precision {
    kFloat32 = 0,
    kInt8,
  };

  /** Set model with a directory.
   */
  void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
  /** Set model with two specific pathes for program and parameters.
   */
  void SetModel(const std::string& prog_file_path,
                const std::string& params_file_path);
  /** Set program file path.
   */
  void SetProgFile(const std::string& x) { prog_file_ = x; }
  /** Set parameter composed file path.
   */
  void SetParamsFile(const std::string& x) { params_file_ = x; }
  /** Set opt cache dir.
   */
  void SetOptimCacheDir(const std::string& opt_cache_dir) {
    opt_cache_dir_ = opt_cache_dir;
  }
  /** Get the model directory path.
   */
  const std::string& model_dir() const { return model_dir_; }
  /** Get the program file path.
   */
  const std::string& prog_file() const { return prog_file_; }
  /** Get the composed parameters file.
   */
  const std::string& params_file() const { return params_file_; }

  // GPU related.

  /**
   * \brief Turn on GPU.
   * @param memory_pool_init_size_mb initial size of the GPU memory pool in MB.
   * @param device_id the GPU card to use (default is 0).
   */
  void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
  /** Turn off the GPU.
   */
  void DisableGpu();
  /** A bool state telling whether the GPU is turned on.
   */
  bool use_gpu() const { return use_gpu_; }
  /** Get the GPU device id.
   */
  int gpu_device_id() const { return device_id_; }
  /** Get the initial size in MB of the GPU memory pool.
   */
  int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
  /** Get the proportion of the initial memory pool size compared to the device.
   */
  float fraction_of_gpu_memory_for_pool() const;

  /** \brief Control whether to perform IR graph optimization.
   *
   * If turned off, the AnalysisConfig will act just like a NativeConfig.
   */
  void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
  /** A boolean state tell whether the ir graph optimization is actived.
   */
  bool ir_optim() const { return enable_ir_optim_; }

  /** \brief INTERNAL Determine whether to use the feed and fetch operators.
   * Just for internal development, not stable yet.
   * When ZeroCopyTensor is used, this should turned off.
   */
  void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
  /** A boolean state telling whether to use the feed and fetch operators.
   */
  bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }

  /** \brief Control whether to specify the inputs' names.
   *
   * The PaddleTensor type has a `name` member, assign it with the corresponding
   * variable name. This is used only when the input PaddleTensors passed to the
   * `PaddlePredictor.Run(...)` cannot follow the order in the training phase.
   */
  void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }

  /** A boolean state tell whether the input PaddleTensor names specified should
   * be used to reorder the inputs in `PaddlePredictor.Run(...)`.
   */
  bool specify_input_name() const { return specify_input_name_; }

  /**
   * \brief Turn on the TensorRT engine.
   *
   * The TensorRT engine will accelerate some subgraphes in the original Fluid
   * computation graph. In some models such as TensorRT50, GoogleNet and so on,
   * it gains significant performance acceleration.
   *
   * @param workspace_size the memory size(in byte) used for TensorRT workspace.
   * @param max_batch_size the maximum batch size of this prediction task,
   * better set as small as possible, or performance loss.
   * @param min_subgrpah_size the minimum TensorRT subgraph size needed, if a
   * subgraph is less than this, it will not transfer to TensorRT engine.
   */
  void EnableTensorRtEngine(int workspace_size = 1 << 20,
                            int max_batch_size = 1, int min_subgraph_size = 3,
                            Precision precision = Precision::kFloat32,
                            bool use_static = false,
                            bool use_calib_mode = true);
  /** A boolean state telling whether the TensorRT engine is used.
   */
  bool tensorrt_engine_enabled() const { return use_tensorrt_; }
  /**
   *  \brief Turn on the usage of Anakin sub-graph engine.
   */
  void EnableAnakinEngine(
      int max_batch_size = 1,
      std::map<std::string, std::vector<int>> max_input_shape = {},
      int min_subgraph_size = 6, Precision precision = Precision::kFloat32,
      bool auto_config_layout = false,
      std::vector<std::string> passes_filter = {},
      std::vector<std::string> ops_filter = {});

  /** A boolean state indicating whether the Anakin sub-graph engine is used.
  */
  bool anakin_engine_enabled() const { return use_anakin_; }

  /** \brief Control whether to debug IR graph analysis phase.
   *
   * This will generate DOT files for visualizing the computation graph after
   * each analysis pass applied.
   */
  void SwitchIrDebug(int x = true);

  /** Turn on NGRAPH.
   */
  void EnableNgraph();
  /** A boolean state telling whether to use the NGRAPH.
   */
  bool ngraph_enabled() const { return use_ngraph_; }

  /** Turn on MKLDNN.
   */
  void EnableMKLDNN();
  /** set the cache capacity of different input shapes for MKLDNN.
   *  Default 0 means don't cache any shape.
   */
  void SetMkldnnCacheCapacity(int capacity);
  /** A boolean state telling whether to use the MKLDNN.
   */
  bool mkldnn_enabled() const { return use_mkldnn_; }

  /** Set and get the number of cpu math library threads.
   */
  void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
  /** An int state telling how many threads are used in the CPU math library.
   */
  int cpu_math_library_num_threads() const {
    return cpu_math_library_num_threads_;
  }

  /** Transform the AnalysisConfig to NativeConfig.
   */
  NativeConfig ToNativeConfig() const;
  /** Specify the operator type list to use MKLDNN acceleration.
   * @param op_list the operator type list.
   */
  void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
    mkldnn_enabled_op_types_ = op_list;
  }

  /** Turn on quantization.
   */
  void EnableMkldnnQuantizer();

  /** A boolean state telling whether the quantization is enabled.
  */
  bool mkldnn_quantizer_enabled() const { return use_mkldnn_quantizer_; }

  MkldnnQuantizerConfig* mkldnn_quantizer_config() const;

  /** Specify the memory buffer of program and parameter
   * @param prog_buffer the memory buffer of program.
   * @param prog_buffer_size the size of the data.
   * @param params_buffer the memory buffer of the composed parameters file.
   * @param params_buffer_size the size of the commposed parameters data.
   */
  void SetModelBuffer(const char* prog_buffer, size_t prog_buffer_size,
                      const char* params_buffer, size_t params_buffer_size);
  /** A boolean state telling whether the model is set from the CPU memory.
   */
  bool model_from_memory() const { return model_from_memory_; }

  /** Turn on memory optimize
   * NOTE still in development, will release latter.
   */
  void EnableMemoryOptim(bool static_optim = false,
                         bool force_update_static_cache = false);
  /** Tell whether the memory optimization is activated. */
  bool enable_memory_optim() const;
  void SetInValid() const { is_valid_ = false; }
  bool is_valid() const { return is_valid_; }

  friend class ::paddle::AnalysisPredictor;

  /** NOTE just for developer, not an official API, easily to be broken.
   * Get a pass builder for customize the passes in IR analysis phase.
   */
  PassStrategy* pass_builder() const;
  void PartiallyRelease();

 protected:
  // Update the config.
  void Update();

  std::string SerializeInfoCache();

 protected:
  // Model pathes.
  std::string model_dir_;
  mutable std::string prog_file_;
  mutable std::string params_file_;

  // GPU related.
  bool use_gpu_{false};
  int device_id_{0};
  uint64_t memory_pool_init_size_mb_{100};  // initial size is 100MB.

  // TensorRT related.
  bool use_tensorrt_{false};
  // For workspace_size, refer it from here:
  // https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
  int tensorrt_workspace_size_;
  // While TensorRT allows an engine optimized for a given max batch size
  // to run at any smaller size, the performance for those smaller
  // sizes may not be as well-optimized. Therefore, Max batch is best
  // equivalent to the runtime batch size.
  int tensorrt_max_batchsize_;
  //  We transform the Ops that can be converted into TRT layer in the model,
  //  and aggregate these Ops into subgraphs for TRT execution.
  //  We set this variable to control the minimum number of nodes in the
  //  subgraph, 3 as default value.
  int tensorrt_min_subgraph_size_{3};
  Precision tensorrt_precision_mode_;
  bool trt_use_static_engine_;
  bool trt_use_calib_mode_;

  // memory reuse related.
  bool enable_memory_optim_{false};
  bool static_memory_optim_{false};
  bool static_memory_optim_force_update_{false};

  bool use_ngraph_{false};
  bool use_mkldnn_{false};
  std::unordered_set<std::string> mkldnn_enabled_op_types_;

  bool model_from_memory_{false};

  bool enable_ir_optim_{true};
  bool use_feed_fetch_ops_{true};
  bool ir_debug_{false};

  bool specify_input_name_{false};

  int cpu_math_library_num_threads_{1};

  // A runtime cache, shouldn't be transferred to others.
  std::string serialized_info_cache_;

  mutable std::unique_ptr<PassStrategy> pass_builder_;

  bool use_anakin_{false};
  int anakin_max_batchsize_;
  int anakin_min_subgraph_size_{6};
  std::map<std::string, std::vector<int>> anakin_max_input_shape_;
  Precision anakin_precision_mode_;
  bool anakin_auto_config_layout_{false};
  std::vector<std::string> anakin_passes_filter_;
  std::vector<std::string> anakin_ops_filter_;

  // mkldnn related.
  int mkldnn_cache_capacity_{0};
  bool use_mkldnn_quantizer_{false};
  std::shared_ptr<MkldnnQuantizerConfig> mkldnn_quantizer_config_;

  // If the config is already used on a predictor, it becomes invalid.
  // Any config can only be used with one predictor.
  // Variables held by config can take up a lot of memory in some cases.
  // So we release the memory when the predictor is set up.
  mutable bool is_valid_{true};
  std::string opt_cache_dir_;
};

}  // namespace paddle