layer.cc 16.8 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/imperative/layer.h"

#include <algorithm>
#include <deque>
#include <limits>
#include <map>
#include <random>
#include <unordered_set>
#include <utility>

#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/profiler.h"
#include "paddle/fluid/string/printf.h"

namespace paddle {
namespace imperative {

void ThreadSafeNameSet::Insert(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  set_.insert(name);
}

void ThreadSafeNameSet::Remove(const std::string& name) {
  std::lock_guard<std::mutex> guard(mtx_);
  auto iter = set_.find(name);
  PADDLE_ENFORCE(iter != set_.end(), "%s does not exist", name);
  set_.erase(iter);
}

std::vector<std::string> ThreadSafeNameSet::Names() const {
  std::lock_guard<std::mutex> guard(mtx_);
  return std::vector<std::string>(set_.begin(), set_.end());
}

ThreadSafeNameSet VarBase::name_set_;

std::vector<std::string> VarBase::AliveVarNames() { return name_set_.Names(); }

using framework::Variable;

namespace detail {

template <typename T>
class TensorAddToFunctor : public boost::static_visitor<> {
 public:
  TensorAddToFunctor(int64_t numel, const T* x, T* y)
      : numel_(numel), x_(x), y_(y) {}

  void operator()(const platform::CPUPlace& place) {
    platform::CPUDeviceContext* ctx = dynamic_cast<platform::CPUDeviceContext*>(
        platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CPUDeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }

#ifdef PADDLE_WITH_CUDA
  void operator()(const platform::CUDAPlace& place) {
    platform::CUDADeviceContext* ctx =
        dynamic_cast<platform::CUDADeviceContext*>(
            platform::DeviceContextPool::Instance().Get(place));
    auto blas = operators::math::GetBlas<platform::CUDADeviceContext, T>(*ctx);
    blas.AXPY(numel_, 1., x_, y_);
  }
#else
  void operator()(const platform::CUDAPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }
#endif

  // there is NO blas in CUDAPinnedPlace
  void operator()(const platform::CUDAPinnedPlace& place) {
    PADDLE_THROW("Do NOT support gradient merge in place %s", place);
  }

 private:
  int64_t numel_;
  const T* x_;
  T* y_;
};

}  // namespace detail

void AddTo(std::shared_ptr<VarBase> src, std::shared_ptr<VarBase> dst,
           platform::Place place, GradientRef* grad_ref) {
  PADDLE_ENFORCE(grad_ref->find(dst.get()) != grad_ref->end(),
                 "gradient %s are not found in grad_ref", dst->Name());
  if ((*grad_ref)[dst.get()].second) {
    PADDLE_ENFORCE(src->IsInitialize(), "Using uninitialized VarBase");
    dst->var_ = std::move(src->var_);
    (*grad_ref)[dst.get()].second = false;
    if (!dst->IsInitialize()) {
      dst->SetInitialize(true);
    }
    return;
  } else {
    framework::Tensor* dst_tensor =
        dst->var_->GetMutable<framework::LoDTensor>();
    framework::Tensor* src_tensor =
        src->var_->GetMutable<framework::LoDTensor>();

    // FIXME(minqiyang): loss_grad op will pass a zero grad of label
    // ugly fix for it
    if (src_tensor->numel() == 0) {
      return;
    }

    PADDLE_ENFORCE(dst_tensor->numel() == src_tensor->numel(),
                   "dst_numel %lld vs. src_numel %lld", dst_tensor->numel(),
                   src_tensor->numel());

    detail::TensorAddToFunctor<float> func(
        src_tensor->numel(), src_tensor->data<float>(),
        dst_tensor->mutable_data<float>(place));
    boost::apply_visitor(func, place);
  }
}

void ZeroGrads(const std::shared_ptr<imperative::VarBase> vb,
               const platform::Place& place) {
  platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance();
  auto* dev_ctx = pool.Get(place);
  auto grad_t = vb->var_->GetMutable<framework::LoDTensor>();
  operators::math::set_constant(*dev_ctx, grad_t, 0.0);
}

void AddGradBySort(BackwardSumMap* bck_map,
                   std::shared_ptr<imperative::VarBase> target,
                   GradientRef* grad_ref) {
  PADDLE_ENFORCE(bck_map->find(target.get()) != bck_map->end(),
                 "Can't find %s in backward grad map", target->Name());
  std::pair<platform::Place,
            std::vector<std::pair<int, std::shared_ptr<imperative::VarBase>>>>&
      current = bck_map->at(target.get());
  std::sort(current.second.begin(), current.second.end(),
            [](const std::pair<int, std::shared_ptr<imperative::VarBase>>& a,
               const std::pair<int, std::shared_ptr<imperative::VarBase>>& b) {
              return a.first > b.first;
            });
  for (auto& var_pair : current.second) {
    VLOG(10) << "add origin_grad: " << target->Name();
    VLOG(10) << "added grad: " << var_pair.second->Name()
             << " trace id is: " << var_pair.first;
    AddTo(var_pair.second, target, current.first, grad_ref);
    var_pair.second.reset();
  }
}

class Autograd {
 public:
  Autograd() {}

  void RunBackward(VarBase* var, const detail::BackwardStrategy& bck_stratedy) {
    if (var->IsStopGradient()) {
      return;
    }
    VLOG(2) << "start autograd";
    BackwardSumMap bck_map;
    std::deque<OpBase*> ready;
    ready.push_back(var->PreOp());

    std::map<OpBase*, int> dep_counts =
        ComputeDepCounts(var->PreOp(), bck_stratedy, &grad_ref);

    while (!ready.empty()) {
      OpBase* ready_op = ready.front();
      ready.pop_front();
      std::vector<VarBasePtrMap> grads_outputs =
          ready_op->ApplyGrad(&bck_map, &grad_ref, bck_stratedy);

      for (const auto& map : grads_outputs) {
        for (auto it = map.rbegin(); it != map.rend(); ++it) {
          const std::vector<std::shared_ptr<VarBase>>& grad_outs = it->second;
          for (size_t i = 0; i < grad_outs.size(); ++i) {
            if (!grad_outs[i] || grad_outs[i]->IsStopGradient()) continue;
            OpBase* pre_op = grad_outs[i]->PreOp();
            if (!pre_op) continue;
            dep_counts[pre_op] -= 1;
            PADDLE_ENFORCE(dep_counts[pre_op] >= 0);
            bool pre_op_ready = dep_counts[pre_op] == 0;
            if (pre_op_ready) {
              ready.push_back(pre_op);
            }
          }
        }
      }

      ready_op->InvokeBackwardHooks();
    }
  }

 private:
  std::map<OpBase*, int> ComputeDepCounts(
      OpBase* op, const detail::BackwardStrategy& bck_stratedy,
      GradientRef* grad_ref) {
    if (bck_stratedy.sorted_sum_gradient_) {
      PADDLE_ENFORCE_NOT_NULL(grad_ref,
                              "grad_ref should not be null when "
                              "using sorted grad backward strategy");
    }
    std::map<OpBase*, int> ret;

    std::deque<OpBase*> queue;
    queue.push_back(op);
    std::unordered_set<OpBase*> visited;
    visited.insert(op);
    while (!queue.empty()) {
      OpBase* candidate = queue.front();
      queue.pop_front();
      for (const auto& map : candidate->grad_output_vars_) {
        for (const auto& it : map) {
          for (const auto& vb : it.second) {
            if (bck_stratedy.sorted_sum_gradient_) {
              ++(*grad_ref)[vb.get()].first;
            }
            // init the state of the grad_
            (*grad_ref)[vb.get()].second = true;
          }
        }
      }
      for (auto it : candidate->pre_ops_) {
        for (OpBase* pre_op : it.second) {
          if (!pre_op) continue;
          VLOG(2) << "op dep " << candidate->Type() << " trace id "
                  << candidate->trace_id_ << " <---- " << it.first << " <---- "
                  << pre_op->Type() << " trace id " << pre_op->trace_id_;
          if (visited.find(pre_op) == visited.end()) {
            visited.insert(pre_op);
            queue.push_back(pre_op);
          }
          ret[pre_op] += 1;
        }
      }
    }
    return ret;
  }

  GradientRef grad_ref;
};

std::unique_ptr<VarBase> VarBase::NewVarBase(const platform::Place& dst_place,
                                             const bool blocking) const {
  PADDLE_ENFORCE(var_->IsInitialized(),
                 "Variable must be initialized when getting numpy tensor");

  // TODO(minqiyang): change this after move unique_name generator to CXX
  const framework::LoDTensor& self_tensor = var_->Get<framework::LoDTensor>();
  std::unique_ptr<VarBase> new_var(new VarBase(
      "Itmp", self_tensor.type(), self_tensor.dims(), dst_place, true, false));
  framework::LoDTensor* tensor =
      new_var->var_->GetMutable<framework::LoDTensor>();
  tensor->set_lod(var_->Get<framework::LoDTensor>().lod());

  const auto& src_tensor = var_->Get<framework::LoDTensor>();
  framework::TensorCopy(src_tensor, dst_place, tensor);
  if (blocking) {
    platform::DeviceContextPool::Instance().Get(dst_place)->Wait();
    auto src_place = src_tensor.place();
    if (!(src_place == dst_place)) {
      platform::DeviceContextPool::Instance().Get(src_place)->Wait();
    }
  }

  if (platform::is_gpu_place(dst_place)) {
    VLOG(3) << "copy tensor " << Name() << " from gpu";
  }

  return new_var;
}

framework::LoDTensor& VarBase::GradValue() {
  VLOG(3) << "get var grad " << Name();
  PADDLE_ENFORCE_NOT_NULL(grads_,
                          "Could not get grad value from no grad variable");
  return *(grads_->var_->GetMutable<framework::LoDTensor>());
}

std::vector<VarBasePtrMap> OpBase::ApplyGrad(
    BackwardSumMap* bck_map, GradientRef* grad_ref,
    const detail::BackwardStrategy& bck_stratedy) {
  PADDLE_ENFORCE(!grad_op_descs_.empty(), "%s has no backward implementation",
                 Type());
  VLOG(3) << "apply op grad: " << Type();
  std::vector<VarBasePtrMap> tmp_grad_outputs;
  const size_t grad_op_count = grad_op_descs_.size();

  tmp_grad_outputs.resize(grad_op_count);
  for (size_t k = 0; k < grad_op_count; ++k) {
    framework::OpDesc* grad_op_desc = grad_op_descs_[k];
    platform::RecordEvent record_event(grad_op_desc->Type());
    auto& grad_output_variable_map = grad_output_vars_[k];
    VLOG(3) << "apply grad op " << grad_op_desc->Type();

    // Allocate tmp grad output variable
    for (const auto& it : grad_output_variable_map) {
      auto& outputs = tmp_grad_outputs[k][it.first];
      outputs.reserve(it.second.size());
      for (const std::shared_ptr<imperative::VarBase>& origin_grad_var_base :
           it.second) {
        // Allocate a new variable
        std::shared_ptr<imperative::VarBase> tmp_grad_var_base(new VarBase(
            string::Sprintf("%s@IGrad", origin_grad_var_base->Name()),
            origin_grad_var_base->DataType(), origin_grad_var_base->Dims(),
            place_, true, false));
        outputs.emplace_back(std::move(tmp_grad_var_base));
      }
    }

    // No need to do compile time infer shape here.
    // grad_op_desc_->InferShape(*block_);
    // grad_op_desc->InferVarType(block_);

    std::unique_ptr<framework::OperatorBase> opbase =
        framework::OpRegistry::CreateOp(*grad_op_desc);

    auto& info = framework::OpInfoMap::Instance().Get(grad_op_desc->Type());
    if (info.infer_var_type_) {
      RuntimeInferVarTypeContext infer_var_type_ctx(
          &grad_input_vars_[k], &tmp_grad_outputs[k], &(opbase->Attrs()));
      info.infer_var_type_(&infer_var_type_ctx);
    }

    framework::OperatorWithKernel* op_kernel =
        dynamic_cast<framework::OperatorWithKernel*>(opbase.get());
    PADDLE_ENFORCE_NOT_NULL(op_kernel, "only support op with kernel");

    // Run grad op
    framework::VariableValueMap grad_invars_map;
    framework::VariableValueMap grad_outvars_map;

    for (const auto& it : grad_input_vars_[k]) {
      auto& grad_invars = grad_invars_map[it.first];
      grad_invars.reserve(it.second.size());
      for (const std::shared_ptr<imperative::VarBase>& grad_inp : it.second) {
        PADDLE_ENFORCE_NOT_NULL(grad_inp->var_, "op %s input %s nullptr",
                                grad_op_desc->Type(), grad_inp->Name());
        if (!grad_inp->IsInitialize()) {
          grad_inp->InitBuffer();
          ZeroGrads(grad_inp, place_);
        }
        const std::shared_ptr<imperative::VarBase>& const_grad_inp = grad_inp;
        grad_invars.emplace_back(const_grad_inp->var_.get());
      }
    }

    for (const auto& it : tmp_grad_outputs[k]) {
      auto& grad_outvars = grad_outvars_map[it.first];
      grad_outvars.reserve(it.second.size());
      for (const std::shared_ptr<imperative::VarBase>& grad_out : it.second) {
        PADDLE_ENFORCE_NOT_NULL(grad_out->var_, "op %s output %s nullptr",
                                grad_op_desc->Type(), grad_out->Name());

        grad_outvars.emplace_back(grad_out->var_.get());
      }
    }

    framework::RuntimeContext ctx(grad_invars_map, grad_outvars_map);
    framework::Scope scope;
    PreparedOp p = PreparedOp::Prepare(ctx, *op_kernel, place_);
    p.op.RuntimeInferShape(scope, place_, ctx);
    p.func(
        framework::ExecutionContext(p.op, scope, *p.dev_ctx, p.ctx, nullptr));
  }

  platform::RecordEvent record_event("merge_grads");
  // Add tmp grad outputs to original grad vars
  for (size_t k = 0; k < grad_output_vars_.size(); ++k) {
    for (const auto& it : grad_output_vars_[k]) {
      auto& outputs = tmp_grad_outputs[k][it.first];
      const auto& origin_outputs = it.second;
      PADDLE_ENFORCE_EQ(outputs.size(), origin_outputs.size());

      for (size_t i = 0; i < outputs.size(); ++i) {
        // track outputs used by sum
        if (bck_stratedy.sorted_sum_gradient_) {
          if (bck_map->find(origin_outputs[i].get()) != bck_map->end()) {
            VLOG(10) << "add sub grad to " << origin_outputs[i]->Name();
            bck_map->at(origin_outputs[i].get())
                .second.emplace_back(
                    std::pair<int, std::shared_ptr<imperative::VarBase>>(
                        this->trace_id_, std::move(outputs[i])));
          } else {
            VLOG(10) << "insert new map for " << origin_outputs[i]->Name();
            std::pair<platform::Place,
                      std::vector<
                          std::pair<int, std::shared_ptr<imperative::VarBase>>>>
                tmp(place_,
                    {std::make_pair(this->trace_id_, std::move(outputs[i]))});
            bck_map->insert(std::make_pair(origin_outputs[i].get(), tmp));
          }

          PADDLE_ENFORCE(
              grad_ref->find(origin_outputs[i].get()) != grad_ref->end(),
              "Can't find  %s in grad_reference count map",
              origin_outputs[i]->Name());
          PADDLE_ENFORCE(grad_ref->at(origin_outputs[i].get()).first >= 1,
                         "Backward error when calculate grad reference");
          if (grad_ref->at(origin_outputs[i].get()).first > 1) {
            VLOG(10) << "remove ref for " << origin_outputs[i]->Name();
            grad_ref->at(origin_outputs[i].get()).first--;
          } else {
            VLOG(10) << "Add grad for: " << origin_outputs[i]->Name();
            AddGradBySort(bck_map, origin_outputs[i], grad_ref);
            grad_ref->at(origin_outputs[i].get()).first--;
          }
        } else {
          VLOG(10) << "AddTo Called with orig_grad is: "
                   << origin_outputs[i]->name_ << " Grad to be added is "
                   << outputs[i]->name_;
          AddTo(outputs[i], origin_outputs[i], place_, grad_ref);
          outputs[i].reset();
        }
      }
    }
  }

  return grad_output_vars_;
}

void OpBase::InvokeBackwardHooks() {
  VLOG(3) << "call backward hooks, hooks num: " << backward_hooks_.size();

  // call backward hooks
  for (py::object& callable : backward_hooks_) {
    callable(this);
  }
}

void OpBase::RegisterBackwardHooks(const py::object& callable) {
  VLOG(3) << "Register backward hooks " << trace_id_;

  // TODO(minqiyang): check the callable format
  backward_hooks_.push_back(callable);
}

void VarBase::RunBackward(const detail::BackwardStrategy& bck_stratedy) {
  if (!pre_op_) return;
  platform::RecordEvent record_event("Imperative Backward");
  VLOG(3) << "start backward";
  grads_->InitBuffer();
  auto grads_t = grads_->var_->GetMutable<framework::LoDTensor>();
  operators::math::set_constant(
      *(platform::DeviceContextPool::Instance().Get(
          var_->GetMutable<framework::LoDTensor>()->place())),
      grads_t, 1.0);

  Autograd().RunBackward(this, bck_stratedy);
}

}  // namespace imperative
}  // namespace paddle