broadcast_op_handle.cc 5.9 KB
Newer Older
X
xiexionghang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
//   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/container_cast.h"
#include "paddle/fluid/framework/details/variable_visitor.h"
#include "paddle/fluid/platform/profiler.h"

namespace paddle {
namespace framework {
namespace details {

void BroadcastOpHandle::RunImpl() {
  platform::RecordEvent record_event(Name());

  if (places_.size() == 1) return;

  // The input and output may have dummy vars.
  auto in_var_handles = DynamicCast<VarHandle>(inputs_);
  auto out_var_handles = DynamicCast<VarHandle>(outputs_);

  PADDLE_ENFORCE_EQ(in_var_handles.size(), 1UL,
                    "The number of input should be one.");
  PADDLE_ENFORCE_EQ(
      out_var_handles.size(), places_.size(),
      "The number of output should equal to the number of places.");

  VarHandle *in_var_handle = in_var_handles[0];

  WaitInputVarGenerated();

  BroadcastOneVar(*in_var_handle, out_var_handles, local_exec_scopes_);
}

void BroadcastOpHandle::BroadcastOneVar(
    const VarHandle &in_var_handle,
    const std::vector<VarHandle *> &out_var_handles,
    const std::vector<Scope *> &var_scopes) {
  auto *in_var =
      var_scopes.at(in_var_handle.scope_idx())->FindVar(in_var_handle.name());
  PADDLE_ENFORCE_NOT_NULL(in_var);
  Tensor &in_tensor = VariableVisitor::GetMutableTensor(in_var);
  if (UNLIKELY(!in_tensor.IsInitialized())) {
    VLOG(3) << "in var " << in_var_handle.name() << "not inited, return!";
    return;
  }

  InitOutputValue(in_var_handle, out_var_handles);

  if (platform::is_cpu_place(in_tensor.place())) {
    for (auto *out_var_handle : out_var_handles) {
      if (out_var_handle->IsTheSameVar(in_var_handle)) {
        continue;
      }
      auto &out_p = out_var_handle->place();
      auto *out_var = var_scopes.at(out_var_handle->scope_idx())
                          ->FindVar(out_var_handle->name());

      RunAndRecordEvent(out_p, [in_tensor, out_var] {
        paddle::framework::TensorCopy(
            in_tensor, platform::CPUPlace(),
            &VariableVisitor::GetMutableTensor(out_var));
      });
    }
  } else {
#if defined(PADDLE_WITH_CUDA) && !defined(_WIN32)
    VarHandle *out_handle = nullptr;
    int root_id = boost::get<platform::CUDAPlace>(in_tensor.place()).device;
    std::vector<std::function<void()>> broadcast_calls;

    int type = platform::ToNCCLDataType(in_tensor.type());
    size_t numel = static_cast<size_t>(in_tensor.numel());

    for (auto out_var_handle : out_var_handles) {
      Variable *out_var = var_scopes.at(out_var_handle->scope_idx())
                              ->FindVar(out_var_handle->name());

      int dst_id =
          boost::get<platform::CUDAPlace>(out_var_handle->place()).device;

      auto &nccl_ctx = nccl_ctxs_->at(dst_id);

      void *send_recv_buffer = nullptr;
      if (root_id == dst_id) {
        send_recv_buffer = const_cast<void *>(in_tensor.data<void>());
        out_handle = out_var_handle;
      } else {
        send_recv_buffer = VariableVisitor::GetMutableTensor(out_var)
                               .Resize(in_tensor.dims())
                               .mutable_data(out_var_handle->place());
      }

      broadcast_calls.emplace_back(
          [send_recv_buffer, numel, type, root_id, &nccl_ctx] {
            PADDLE_ENFORCE(platform::dynload::ncclBcast(
                send_recv_buffer, numel, static_cast<ncclDataType_t>(type),
                root_id, nccl_ctx.comm_, nccl_ctx.stream()));
          });
    }

    this->RunAndRecordEvent([&] {
      {
        platform::NCCLGroupGuard guard;
        for (auto &call : broadcast_calls) {
          call();
        }
      }

      if (!out_handle->IsTheSameVar(in_var_handle)) {
        auto out_var = var_scopes.at(in_var_handle.scope_idx())
                           ->FindVar(out_var_handles[0]->name());
        paddle::framework::TensorCopy(
            in_tensor, in_var_handle.place(),
            *(dev_ctxes_.at(in_var_handle.place())),
            &VariableVisitor::GetMutableTensor(out_var));
      }
    });
#else
    PADDLE_THROW("CUDA is not enabled.");
#endif
  }
}

void BroadcastOpHandle::InitOutputValue(
    const VarHandle &in_var_handle,
    const std::vector<VarHandle *> &out_var_handles) const {
  auto &var_scopes = local_exec_scopes_;
  auto *in_var =
      var_scopes.at(in_var_handle.scope_idx())->FindVar(in_var_handle.name());

  Tensor &in_tensor = VariableVisitor::GetMutableTensor(in_var);

  // NOTE: The tensors' Place of input and output must be all on GPU or all on
  // CPU.
  for (auto *out_var_handle : out_var_handles) {
    if (out_var_handle->IsTheSameVar(in_var_handle)) {
      continue;
    }
    auto t_out_p = out_var_handle->place();
    auto *out_var = var_scopes.at(out_var_handle->scope_idx())
                        ->FindVar(out_var_handle->name());
    PADDLE_ENFORCE_NOT_NULL(out_var);
    if (is_gpu_place(in_tensor.place())) {
      PADDLE_ENFORCE(platform::is_gpu_place(t_out_p),
                     "Places of input and output must be all on GPU.");
    } else {
      t_out_p = platform::CPUPlace();
    }
    VariableVisitor::ShareDimsAndLoD(*in_var, out_var);
    VariableVisitor::GetMutableTensor(out_var).mutable_data(t_out_p,
                                                            in_tensor.type());
  }
}

std::string BroadcastOpHandle::Name() const { return "broadcast"; }
}  // namespace details
}  // namespace framework
}  // namespace paddle