model.py 3.7 KB
Newer Older
Z
zhangwenhui03 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
import paddle.fluid as fluid

from fleetrec.core.utils import envs
from fleetrec.core.model import Model as ModelBase


class Model(ModelBase):
    def __init__(self, config):
        ModelBase.__init__(self, config)

    def all_vocab_network(self):
        """ network definition """
        recall_k = envs.get_global_env("hyper_parameters.recall_k", None, self._namespace)
        vocab_size = envs.get_global_env("hyper_parameters.vocab_size", None, self._namespace)
        hid_size = envs.get_global_env("hyper_parameters.hid_size", None, self._namespace)
        init_low_bound = envs.get_global_env("hyper_parameters.init_low_bound", None, self._namespace)
        init_high_bound = envs.get_global_env("hyper_parameters.init_high_bound", None, self._namespace)
        emb_lr_x = envs.get_global_env("hyper_parameters.emb_lr_x", None, self._namespace)
        gru_lr_x = envs.get_global_env("hyper_parameters.gru_lr_x", None, self._namespace)
        fc_lr_x = envs.get_global_env("hyper_parameters.fc_lr_x", None, self._namespace)
        # Input data
        src_wordseq = fluid.data(
            name="src_wordseq", shape=[None, 1], dtype="int64", lod_level=1)
        dst_wordseq = fluid.data(
            name="dst_wordseq", shape=[None, 1], dtype="int64", lod_level=1)

        emb = fluid.embedding(
            input=src_wordseq,
            size=[vocab_size, hid_size],
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=init_low_bound, high=init_high_bound),
                learning_rate=emb_lr_x),
            is_sparse=True)
        fc0 = fluid.layers.fc(input=emb,
                              size=hid_size * 3,
                              param_attr=fluid.ParamAttr(
                                  initializer=fluid.initializer.Uniform(
                                      low=init_low_bound, high=init_high_bound),
                                  learning_rate=gru_lr_x))
        gru_h0 = fluid.layers.dynamic_gru(
            input=fc0,
            size=hid_size,
            param_attr=fluid.ParamAttr(
                initializer=fluid.initializer.Uniform(
                    low=init_low_bound, high=init_high_bound),
                learning_rate=gru_lr_x))

        fc = fluid.layers.fc(input=gru_h0,
                             size=vocab_size,
                             act='softmax',
                             param_attr=fluid.ParamAttr(
                                 initializer=fluid.initializer.Uniform(
                                     low=init_low_bound, high=init_high_bound),
                                 learning_rate=fc_lr_x))
        cost = fluid.layers.cross_entropy(input=fc, label=dst_wordseq)
        acc = fluid.layers.accuracy(input=fc, label=dst_wordseq, k=recall_k)
        avg_cost = fluid.layers.mean(x=cost)

        self._data_var.append(src_wordseq)
        self._data_var.append(dst_wordseq)
        self._cost = avg_cost
        self._metrics["cost"] = avg_cost
        self._metrics["acc"] = acc


    def train_net(self):
        self.all_vocab_network()


    def infer_net(self):
        pass