evaluate_reader.py 5.3 KB
Newer Older
M
add gnn  
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import io
import copy
import random
from fleetrec.core.reader import Reader
from fleetrec.core.utils import envs


class EvaluateReader(Reader):
    def init(self):
        self.batch_size = envs.get_global_env("batch_size", None, "evaluate.reader")
        
        self.input = []
        self.length = None

    def base_read(self, files):
        res = []
        for f in files:
	    with open(f, "r") as fin:
                for line in fin:
		    line = line.strip().split('\t')
		    res.append(tuple([map(int, line[0].split(',')), int(line[1])]))
        return res

    def make_data(self, cur_batch, batch_size):
        cur_batch = [list(e) for e in cur_batch]
        max_seq_len = 0
        for e in cur_batch:
            max_seq_len = max(max_seq_len, len(e[0]))
        last_id = []
        for e in cur_batch:
            last_id.append(len(e[0]) - 1)
            e[0] += [0] * (max_seq_len - len(e[0]))

        max_uniq_len = 0
        for e in cur_batch:
            max_uniq_len = max(max_uniq_len, len(np.unique(e[0])))

        items, adj_in, adj_out, seq_index, last_index = [], [], [], [], []
        mask, label = [], []

        id = 0
        for e in cur_batch:
            node = np.unique(e[0])
            items.append(node.tolist() + (max_uniq_len - len(node)) * [0])
            adj = np.zeros((max_uniq_len, max_uniq_len))

            for i in np.arange(len(e[0]) - 1):
                if e[0][i + 1] == 0:
                    break
                u = np.where(node == e[0][i])[0][0]
                v = np.where(node == e[0][i + 1])[0][0]
                adj[u][v] = 1

            u_deg_in = np.sum(adj, 0)
            u_deg_in[np.where(u_deg_in == 0)] = 1
            adj_in.append(np.divide(adj, u_deg_in).transpose())

            u_deg_out = np.sum(adj, 1)
            u_deg_out[np.where(u_deg_out == 0)] = 1
            adj_out.append(np.divide(adj.transpose(), u_deg_out).transpose())

            seq_index.append(
                [[id, np.where(node == i)[0][0]] for i in e[0]])
            last_index.append(
                [id, np.where(node == e[0][last_id[id]])[0][0]])
            label.append(e[1] - 1)
            mask.append([[1] * (last_id[id] + 1) + [0] *
                         (max_seq_len - last_id[id] - 1)])
            id += 1

        items = np.array(items).astype("int64").reshape((batch_size, -1))
        seq_index = np.array(seq_index).astype("int32").reshape(
            (batch_size, -1, 2))
        last_index = np.array(last_index).astype("int32").reshape(
            (batch_size, 2))
        adj_in = np.array(adj_in).astype("float32").reshape(
            (batch_size, max_uniq_len, max_uniq_len))
        adj_out = np.array(adj_out).astype("float32").reshape(
            (batch_size, max_uniq_len, max_uniq_len))
        mask = np.array(mask).astype("float32").reshape((batch_size, -1, 1))
        label = np.array(label).astype("int64").reshape((batch_size, 1))
        return zip(items, seq_index, last_index, adj_in, adj_out, mask, label)

    def batch_reader(self, batch_size, batch_group_size, train=True):
        def _reader():
            random.shuffle(self.input)
            group_remain = self.length % batch_group_size
            for bg_id in range(0, self.length - group_remain, batch_group_size):
                cur_bg = copy.deepcopy(self.input[bg_id:bg_id + batch_group_size])
                if train:
                    cur_bg = sorted(cur_bg, key=lambda x: len(x[0]), reverse=True)
                for i in range(0, batch_group_size, batch_size):
                    cur_batch = cur_bg[i:i + batch_size]
                    yield self.make_data(cur_batch, batch_size)

            if group_remain == 0:
                return
            remain_data = copy.deepcopy(self.input[-group_remain:])
            if train:
                remain_data = sorted(
                    remain_data, key=lambda x: len(x[0]), reverse=True)
            for i in range(0, group_remain, batch_size):
                if i + batch_size <= group_remain:
                    cur_batch = remain_data[i:i + batch_size]
                    yield self.make_data(cur_batch, batch_size)
                else:
                    # Due to fixed batch_size, discard the remaining ins
                    return
                    #cur_batch = remain_data[i:]
                    #yield self.make_data(cur_batch, group_remain % batch_size)
        return _reader
 
    def generate_batch_from_trainfiles(self, files):
        self.input = self.base_read(files)
        self.length = len(self.input)
        return self.batch_reader(self.batch_size, self.batch_size * 20, False)

    def generate_sample(self, line):
        def data_iter():
            yield []
        return data_iter