tdm_trainer.py 8.6 KB
Newer Older
C
chengmo 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import logging
import paddle.fluid as fluid

from fleetrec.core.trainers.transpiler_trainer import TranspileTrainer
from fleetrec.core.trainers.single_trainer import SingleTrainer
from fleetrec.core.utils import envs
import numpy as np

logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


class TdmSingleTrainer(SingleTrainer):
    def processor_register(self):
        self.regist_context_processor('uninit', self.instance)
        self.regist_context_processor('init_pass', self.init)
        self.regist_context_processor('startup_pass', self.startup)

        if envs.get_platform() == "LINUX":
            self.regist_context_processor('train_pass', self.dataset_train)
        else:
            self.regist_context_processor('train_pass', self.dataloader_train)

        self.regist_context_processor('infer_pass', self.infer)
        self.regist_context_processor('terminal_pass', self.terminal)

    def init(self, context):
        self.model.train_net()
        optimizer = self.model.optimizer()
        optimizer.minimize((self.model.get_cost_op()))

        self.fetch_vars = []
        self.fetch_alias = []
        self.fetch_period = self.model.get_fetch_period()

        metrics = self.model.get_metrics()
        if metrics:
            self.fetch_vars = metrics.values()
            self.fetch_alias = metrics.keys()
        context['status'] = 'startup_pass'

    def startup(self, context):
        namespace = "train.startup"
        load_persistables = envs.get_global_env(
            "single.load_persistables", False, namespace)
        persistables_model_path = envs.get_global_env(
            "single.persistables_model_path", "", namespace)

        load_tree = envs.get_global_env(
            "single.load_tree", False, namespace)
        self.tree_layer_path = envs.get_global_env(
            "single.tree_layer_path", "", namespace)
        self.tree_travel_path = envs.get_global_env(
            "single.tree_travel_path", "", namespace)
        self.tree_info_path = envs.get_global_env(
            "single.tree_info_path", "", namespace)
        self.tree_emb_path = envs.get_global_env(
            "single.tree_emb_path", "", namespace)

        save_init_model = envs.get_global_env(
            "single.save_init_model", False, namespace)
        init_model_path = envs.get_global_env(
            "single.init_model_path", "", namespace)
        self._exe.run(fluid.default_startup_program())

        if load_persistables:
            # 从paddle二进制模型加载参数
            fluid.io.load_persistables(
                executor=self._exe,
                dirname=persistables_model_path,
                main_program=fluid.default_main_program())
            logger.info("Load persistables from \"{}\"".format(
                persistables_model_path))

        if load_tree:
            # 将明文树结构及数据,set到组网中的Variale中
            # 不使用NumpyInitialize方法是考虑到树结构相关数据size过大,有性能风险
            for param_name in Numpy_model:
                param_t = fluid.global_scope().find_var(param_name).get_tensor()
                param_array = self.tdm_prepare(param_name)
                if param_name == 'TDM_Tree_Emb':
                    param_t.set(param_array.astype('float32'), place)
                else:
                    param_t.set(param_array.astype('int32'), place)

        if save_init_model:
            logger.info("Begin Save Init model.")
            fluid.io.save_persistables(
                executor=self._exe, dirname=init_model_path)
            logger.info("End Save Init model.")

        context['status'] = 'train_pass'

    def dataloader_train(self, context):
        reader = self._get_dataloader()
        epochs = envs.get_global_env("train.epochs")

        program = fluid.compiler.CompiledProgram(
            fluid.default_main_program()).with_data_parallel(
            loss_name=self.model.get_cost_op().name)

        metrics_varnames = []
        metrics_format = []

        metrics_format.append("{}: {{}}".format("epoch"))
        metrics_format.append("{}: {{}}".format("batch"))

        for name, var in self.model.get_metrics().items():
            metrics_varnames.append(var.name)
            metrics_format.append("{}: {{}}".format(name))

        metrics_format = ", ".join(metrics_format)

        for epoch in range(epochs):
            reader.start()
            batch_id = 0
            try:
                while True:
                    metrics_rets = self._exe.run(
                        program=program,
                        fetch_list=metrics_varnames)

                    metrics = [epoch, batch_id]
                    metrics.extend(metrics_rets)

                    if batch_id % 10 == 0 and batch_id != 0:
                        print(metrics_format.format(*metrics))
                    batch_id += 1
            except fluid.core.EOFException:
                reader.reset()

        context['status'] = 'infer_pass'

    def dataset_train(self, context):
        dataset = self._get_dataset()
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
            self._exe.train_from_dataset(program=fluid.default_main_program(),
                                         dataset=dataset,
                                         fetch_list=self.fetch_vars,
                                         fetch_info=self.fetch_alias,
                                         print_period=self.fetch_period)
            self.save(i, "train", is_fleet=False)
        context['status'] = 'infer_pass'

    def infer(self, context):
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True

    def tdm_prepare(self, param_name):
        if param_name == "TDM_Tree_Travel":
            travel_array = self.tdm_travel_prepare()
            return travel_array
        elif param_name == "TDM_Tree_Layer":
            layer_array, _ = self.tdm_layer_prepare()
            return layer_array
        elif param_name == "TDM_Tree_Info":
            info_array = self.tdm_info_prepare()
            return info_array
        elif param_name == "TDM_Tree_Emb":
            emb_array = self.tdm_emb_prepare()
            return emb_array
        else:
            raise " {} is not a special tdm param name".format(param_name)

    def tdm_travel_prepare(self):
        """load tdm tree param from npy/list file"""
        travel_array = np.load(self.tree_travel_path)
        logger.info("TDM Tree leaf node nums: {}".format(
            travel_array.shape[0]))
        return travel_array

    def tdm_emb_prepare(self):
        """load tdm tree param from npy/list file"""
        emb_array = np.load(self.tree_emb_path)
        logger.info("TDM Tree node nums from emb: {}".format(
            emb_array.shape[0]))
        return emb_array

    def tdm_layer_prepare(self):
        """load tdm tree param from npy/list file"""
        layer_list = []
        layer_list_flat = []
        with open(self.tree_layer_path, 'r') as fin:
            for line in fin.readlines():
                l = []
                layer = (line.split('\n'))[0].split(',')
                for node in layer:
                    if node:
                        layer_list_flat.append(node)
                        l.append(node)
                layer_list.append(l)
        layer_array = np.array(layer_list_flat)
        layer_array = layer_array.reshape([-1, 1])
        logger.info("TDM Tree max layer: {}".format(len(layer_list)))
        logger.info("TDM Tree layer_node_num_list: {}".format(
            [len(i) for i in layer_list]))
        return layer_array, layer_list

    def tdm_info_prepare(self):
        """load tdm tree param from list file"""
        info_array = np.load(self.tree_info_path)
        return info_array