cluster_trainer.py 4.3 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

"""
Training use fluid with one node only.
"""

from __future__ import print_function
import logging

T
tangwei 已提交
22
import paddle.fluid as fluid
T
tangwei 已提交
23 24 25 26
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler.distributed_strategy import StrategyFactory
from paddle.fluid.incubate.fleet.base.role_maker import PaddleCloudRoleMaker

T
tangwei 已提交
27 28 29
from ..utils import envs
from .transpiler_trainer import TranspileTrainer

T
tangwei 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43
logging.basicConfig(format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("fluid")
logger.setLevel(logging.INFO)


class ClusterTrainerWithDataloader(TranspileTrainer):
    pass


class ClusterTrainerWithDataset(TranspileTrainer):
    def processor_register(self):
        role = PaddleCloudRoleMaker()
        fleet.init(role)

T
tangwei12 已提交
44
        if fleet.is_server():
T
tangwei 已提交
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('server_pass', self.server)
        else:
            self.regist_context_processor('uninit', self.instance)
            self.regist_context_processor('init_pass', self.init)
            self.regist_context_processor('train_pass', self.train)
            self.regist_context_processor('terminal_pass', self.terminal)

    def build_strategy(self):
        mode = envs.get_global_env("train.strategy.mode")
        strategy = None

        if mode == "async":
            strategy = StrategyFactory.create_async_strategy()
        elif mode == "geo":
            push_num = envs.get_global_env("train.strategy.mode.push_num", 100)
            strategy = StrategyFactory.create_geo_strategy(push_num)
        elif mode == "sync":
            strategy = StrategyFactory.create_sync_strategy()
        elif mode == "half_async":
            strategy = StrategyFactory.create_half_async_strategy()

        assert strategy is not None

        return strategy

    def init(self, context):
T
tangwei12 已提交
73 74 75

        print("init pass")

T
tangwei 已提交
76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
        self.model.input()
        self.model.net()
        self.metrics = self.model.metrics()
        self.metric_extras = self.model.metric_extras()

        loss = self.model.avg_loss()
        optimizer = self.model.optimizer()

        strategy = self.build_strategy()
        optimizer = fleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(loss)

        if fleet.is_server():
            context['status'] = 'server_pass'
        else:
            context['status'] = 'train_pass'

    def server(self, context):
        fleet.init_server()
        fleet.run_server()
        context['is_exit'] = True

    def terminal(self, context):
        fleet.stop_worker()
        context['is_exit'] = True

    def train(self, context):
        self.exe.run(fleet.startup_program)
        fleet.init_worker()

        dataset = self._get_dataset()
        epochs = envs.get_global_env("train.epochs")

        for i in range(epochs):
            self.exe.train_from_dataset(program=fluid.default_main_program(),
                                        dataset=dataset,
                                        fetch_list=self.metric_extras[0],
                                        fetch_info=self.metric_extras[1],
                                        print_period=self.metric_extras[2])
            self.save(i, "train", is_fleet=True)
        context['status'] = 'infer_pass'
        fleet.stop_worker()

    def infer(self, context):
        context['status'] = 'terminal_pass'

    def terminal(self, context):
        for model in self.increment_models:
            print("epoch :{}, dir: {}".format(model[0], model[1]))
        context['is_exit'] = True