dataloader.py 3.2 KB
Newer Older
T
tangwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
T
tangwei 已提交
14

T
tangwei 已提交
15
from ...utils import envs
T
tangwei 已提交
16

T
tangwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82
# There are 13 integer features and 26 categorical features
continous_features = range(1, 14)
categorial_features = range(14, 40)
continous_clip = [20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50]


class CriteoDataset(object):
    def __init__(self, sparse_feature_dim):
        self.cont_min_ = [0, -3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
        self.cont_max_ = [
            20, 600, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
        self.cont_diff_ = [
            20, 603, 100, 50, 64000, 500, 100, 50, 500, 10, 10, 10, 50
        ]
        self.hash_dim_ = sparse_feature_dim
        # here, training data are lines with line_index < train_idx_
        self.train_idx_ = 41256555
        self.continuous_range_ = range(1, 14)
        self.categorical_range_ = range(14, 40)

    def _reader_creator(self, file_list, is_train, trainer_num, trainer_id):
        def reader():
            for file in file_list:
                with open(file, 'r') as f:
                    line_idx = 0
                    for line in f:
                        line_idx += 1
                        features = line.rstrip('\n').split('\t')
                        dense_feature = []
                        sparse_feature = []
                        for idx in self.continuous_range_:
                            if features[idx] == '':
                                dense_feature.append(0.0)
                            else:
                                dense_feature.append(
                                    (float(features[idx]) -
                                     self.cont_min_[idx - 1]) /
                                    self.cont_diff_[idx - 1])
                        for idx in self.categorical_range_:
                            sparse_feature.append([
                                hash(str(idx) + features[idx]) % self.hash_dim_
                            ])

                        label = [int(features[0])]
                        yield [dense_feature] + sparse_feature + [label]

        return reader

    def train(self, file_list, trainer_num, trainer_id):
        return self._reader_creator(file_list, True, trainer_num, trainer_id)

    def test(self, file_list):
        return self._reader_creator(file_list, False, 1, 0)


def Train():
    sparse_feature_number = envs.get_global_env("sparse_feature_number")
    train_generator = CriteoDataset(sparse_feature_number)
    return train_generator.train


def Evaluate():
    sparse_feature_number = envs.get_global_env("sparse_feature_number")
    train_generator = CriteoDataset(sparse_feature_number)
    return train_generator.test
T
tangwei 已提交
83