config.yaml 2.7 KB
Newer Older
M
malin10 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

M
malin10 已提交
15
workspace: "paddlerec.models.demo.movie_recommand"
M
malin10 已提交
16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57

# list of dataset
dataset:
- name: dataset_train # name of dataset to distinguish different datasets
  batch_size: 128
  type: QueueDataset 
  data_path: "{workspace}/data/train"
  sparse_slots: "logid time userid gender age occupation movieid title genres label"
  dense_slots: ""
- name: dataset_infer # name
  batch_size: 128
  type: DataLoader
  data_path: "{workspace}/data/test"
  sparse_slots: "logid time userid gender age occupation movieid title genres label"
  dense_slots: ""
- name: dataset_online_infer # name
  batch_size: 10
  type: DataLoader
  data_path: "{workspace}/data/online_user/test"
  sparse_slots: "logid time userid gender age occupation movieid title genres label"
  dense_slots: ""

# hyper parameters of user-defined network
hyper_parameters:
  # optimizer config
  optimizer:
    class: Adam
    learning_rate: 0.001
    strategy: async
  # user-defined <key, value> pairs
  sparse_feature_number: 60000000
  sparse_feature_dim: 9
  dense_input_dim: 13
  fc_sizes: [512, 256, 128, 32]

# train
mode: runner_train

## online or offline infer
#mode: runner_infer
runner:
- name: runner_train
J
Jinhua Liang 已提交
58
  class: train
M
malin10 已提交
59 60 61 62 63 64 65 66
  save_checkpoint_interval: 1 # save model interval of epochs
  save_inference_interval: 1 # save inference
  save_checkpoint_path: "increment" # save checkpoint path
  save_inference_path: "inference" # save inference path
  epochs: 10
  device: cpu

- name: runner_infer
C
Chengmo 已提交
67
  class: infer
M
malin10 已提交
68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92
  print_interval: 10000
  init_model_path: "increment/9" # load model path

#train
phase:
- name: phase1
  model: "{workspace}/model.py" # user-defined model
  dataset_name: dataset_train # select dataset by name
  thread_num: 12

##offline infer
#phase:
#- name: phase1
#  model: "{workspace}/model.py" # user-defined model
#  dataset_name: dataset_infer # select dataset by name
#  save_path: "./infer_result"
#  thread_num: 1

##offline infer
#phase:
#- name: phase1
#  model: "{workspace}/model.py" # user-defined model
#  dataset_name: dataset_online_infer # select dataset by name
#  save_path: "./infer_result"
#  thread_num: 1