Out of memory error on GPU 0. Cannot allocate 3.125000GB memory on GPU 0, available memory is only 117.750000MB.
Created by: zhouyongxyz
Error Message Summary:
ResourceExhaustedError:
Out of memory error on GPU 0. Cannot allocate 3.125000GB memory on GPU 0, available memory is only 117.750000MB.
Please check whether there is any other process using GPU 0.
- If yes, please stop them, or start PaddlePaddle on another GPU.
- If no, please decrease the batch size of your model.
at (/paddle/paddle/fluid/memory/allocation/cuda_allocator.cc:69)
* Check failure stack trace: *
@ 0x7fd50846780d google::LogMessage::Fail() @ 0x7fd50846b2bc google::LogMessage::SendToLog() @ 0x7fd508467333 google::LogMessage::Flush() @ 0x7fd50846c7ce google::LogMessageFatal::~LogMessageFatal() @ 0x7fd50b633598 paddle::framework::details::ExceptionHolder::Catch() @ 0x7fd50b6d0bbe paddle::framework::details::FastThreadedSSAGraphExecutor::RunOpSync() @ 0x7fd50b6ce55f paddle::framework::details::FastThreadedSSAGraphExecutor::RunOp() @ 0x7fd50b6ce824 _ZNSt17_Function_handlerIFvvESt17reference_wrapperISt12_Bind_simpleIFS1_ISt5_BindIFZN6paddle9framework7details28FastThreadedSSAGraphExecutor10RunOpAsyncEPSt13unordered_mapIPNS6_12OpHandleBaseESt6atomicIiESt4hashISA_ESt8equal_toISA_ESaISt4pairIKSA_SC_EEESA_RKSt10shared_ptrINS5_13BlockingQueueImEEEEUlvE_vEEEvEEEE9_M_invokeERKSt9_Any_data @ 0x7fd5084c53e3 std::_Function_handler<>::_M_invoke() @ 0x7fd5082bf0f7 std::__future_base::_State_base::_M_do_set() @ 0x7fd594737a99 __pthread_once_slow @ 0x7fd50b6ca9f2 _ZNSt13__future_base11_Task_stateISt5_BindIFZN6paddle9framework7details28FastThreadedSSAGraphExecutor10RunOpAsyncEPSt13unordered_mapIPNS4_12OpHandleBaseESt6atomicIiESt4hashIS8_ESt8equal_toIS8_ESaISt4pairIKS8_SA_EEES8_RKSt10shared_ptrINS3_13BlockingQueueImEEEEUlvE_vEESaIiEFvvEE6_M_runEv @ 0x7fd5082c1554 _ZZN10ThreadPoolC1EmENKUlvE_clEv @ 0x7fd58dd02421 execute_native_thread_routine_compat @ 0x7fd5947306ba start_thread @ 0x7fd59446641d clone @ (nil) (unknown)使用 2070 和 2080Ti 显卡都这样,paddle 版本 1.8.4-post107 cuda10.2 。并且gpu 的显存是完全足够的,几乎没有怎么使用。