Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
f1f5a4d2
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
大约 1 年 前同步成功
通知
1528
Star
32962
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f1f5a4d2
编写于
6月 30, 2021
作者:
W
WenmuZhou
浏览文件
操作
浏览文件
下载
差异文件
merge dygraph
上级
8f811057
f58ad9dd
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
9 addition
and
499 deletion
+9
-499
tools/infer/benchmark_utils.py
tools/infer/benchmark_utils.py
+0
-232
tools/infer/predict_cls.py
tools/infer/predict_cls.py
+2
-13
tools/infer/predict_det.py
tools/infer/predict_det.py
+0
-2
tools/infer/predict_rec.py
tools/infer/predict_rec.py
+3
-55
tools/infer/predict_system.py
tools/infer/predict_system.py
+1
-63
tools/infer/utility.py
tools/infer/utility.py
+3
-134
未找到文件。
tools/infer/benchmark_utils.py
已删除
100644 → 0
浏览文件 @
8f811057
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
argparse
import
os
import
time
import
logging
import
paddle
import
paddle.inference
as
paddle_infer
from
pathlib
import
Path
CUR_DIR
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
class
PaddleInferBenchmark
(
object
):
def
__init__
(
self
,
config
,
model_info
:
dict
=
{},
data_info
:
dict
=
{},
perf_info
:
dict
=
{},
resource_info
:
dict
=
{},
save_log_path
:
str
=
""
,
**
kwargs
):
"""
Construct PaddleInferBenchmark Class to format logs.
args:
config(paddle.inference.Config): paddle inference config
model_info(dict): basic model info
{'model_name': 'resnet50'
'precision': 'fp32'}
data_info(dict): input data info
{'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info(dict): performance result
{'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info(dict):
cpu and gpu resources
{'cpu_rss': 100
'gpu_rss': 100
'gpu_util': 60}
"""
# PaddleInferBenchmark Log Version
self
.
log_version
=
1.0
# Paddle Version
self
.
paddle_version
=
paddle
.
__version__
self
.
paddle_commit
=
paddle
.
__git_commit__
paddle_infer_info
=
paddle_infer
.
get_version
()
self
.
paddle_branch
=
paddle_infer_info
.
strip
().
split
(
': '
)[
-
1
]
# model info
self
.
model_info
=
model_info
# data info
self
.
data_info
=
data_info
# perf info
self
.
perf_info
=
perf_info
try
:
self
.
model_name
=
model_info
[
'model_name'
]
self
.
precision
=
model_info
[
'precision'
]
self
.
batch_size
=
data_info
[
'batch_size'
]
self
.
shape
=
data_info
[
'shape'
]
self
.
data_num
=
data_info
[
'data_num'
]
self
.
preprocess_time_s
=
round
(
perf_info
[
'preprocess_time_s'
],
4
)
self
.
inference_time_s
=
round
(
perf_info
[
'inference_time_s'
],
4
)
self
.
postprocess_time_s
=
round
(
perf_info
[
'postprocess_time_s'
],
4
)
self
.
total_time_s
=
round
(
perf_info
[
'total_time_s'
],
4
)
except
:
self
.
print_help
()
raise
ValueError
(
"Set argument wrong, please check input argument and its type"
)
# conf info
self
.
config_status
=
self
.
parse_config
(
config
)
self
.
save_log_path
=
save_log_path
# mem info
if
isinstance
(
resource_info
,
dict
):
self
.
cpu_rss_mb
=
int
(
resource_info
.
get
(
'cpu_rss_mb'
,
0
))
self
.
gpu_rss_mb
=
int
(
resource_info
.
get
(
'gpu_rss_mb'
,
0
))
self
.
gpu_util
=
round
(
resource_info
.
get
(
'gpu_util'
,
0
),
2
)
else
:
self
.
cpu_rss_mb
=
0
self
.
gpu_rss_mb
=
0
self
.
gpu_util
=
0
# init benchmark logger
self
.
benchmark_logger
()
def
benchmark_logger
(
self
):
"""
benchmark logger
"""
# Init logger
FORMAT
=
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
log_output
=
f
"
{
self
.
save_log_path
}
/
{
self
.
model_name
}
.log"
Path
(
f
"
{
self
.
save_log_path
}
"
).
mkdir
(
parents
=
True
,
exist_ok
=
True
)
logging
.
basicConfig
(
level
=
logging
.
INFO
,
format
=
FORMAT
,
handlers
=
[
logging
.
FileHandler
(
filename
=
log_output
,
mode
=
'w'
),
logging
.
StreamHandler
(),
])
self
.
logger
=
logging
.
getLogger
(
__name__
)
self
.
logger
.
info
(
f
"Paddle Inference benchmark log will be saved to
{
log_output
}
"
)
def
parse_config
(
self
,
config
)
->
dict
:
"""
parse paddle predictor config
args:
config(paddle.inference.Config): paddle inference config
return:
config_status(dict): dict style config info
"""
config_status
=
{}
config_status
[
'runtime_device'
]
=
"gpu"
if
config
.
use_gpu
()
else
"cpu"
config_status
[
'ir_optim'
]
=
config
.
ir_optim
()
config_status
[
'enable_tensorrt'
]
=
config
.
tensorrt_engine_enabled
()
config_status
[
'precision'
]
=
self
.
precision
config_status
[
'enable_mkldnn'
]
=
config
.
mkldnn_enabled
()
config_status
[
'cpu_math_library_num_threads'
]
=
config
.
cpu_math_library_num_threads
(
)
return
config_status
def
report
(
self
,
identifier
=
None
):
"""
print log report
args:
identifier(string): identify log
"""
if
identifier
:
identifier
=
f
"[
{
identifier
}
]"
else
:
identifier
=
""
self
.
logger
.
info
(
"
\n
"
)
self
.
logger
.
info
(
"---------------------- Paddle info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_version:
{
self
.
paddle_version
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_commit:
{
self
.
paddle_commit
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
paddle_branch:
{
self
.
paddle_branch
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
log_api_version:
{
self
.
log_version
}
"
)
self
.
logger
.
info
(
"----------------------- Conf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
runtime_device:
{
self
.
config_status
[
'runtime_device'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
ir_optim:
{
self
.
config_status
[
'ir_optim'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_memory_optim:
{
True
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_tensorrt:
{
self
.
config_status
[
'enable_tensorrt'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
enable_mkldnn:
{
self
.
config_status
[
'enable_mkldnn'
]
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_math_library_num_threads:
{
self
.
config_status
[
'cpu_math_library_num_threads'
]
}
"
)
self
.
logger
.
info
(
"----------------------- Model info ----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
model_name:
{
self
.
model_name
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
precision:
{
self
.
precision
}
"
)
self
.
logger
.
info
(
"----------------------- Data info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
batch_size:
{
self
.
batch_size
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
input_shape:
{
self
.
shape
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
data_num:
{
self
.
data_num
}
"
)
self
.
logger
.
info
(
"----------------------- Perf info -----------------------"
)
self
.
logger
.
info
(
f
"
{
identifier
}
cpu_rss(MB):
{
self
.
cpu_rss_mb
}
, gpu_rss(MB):
{
self
.
gpu_rss_mb
}
, gpu_util:
{
self
.
gpu_util
}
%"
)
self
.
logger
.
info
(
f
"
{
identifier
}
total time spent(s):
{
self
.
total_time_s
}
"
)
self
.
logger
.
info
(
f
"
{
identifier
}
preprocess_time(ms):
{
round
(
self
.
preprocess_time_s
*
1000
,
1
)
}
, inference_time(ms):
{
round
(
self
.
inference_time_s
*
1000
,
1
)
}
, postprocess_time(ms):
{
round
(
self
.
postprocess_time_s
*
1000
,
1
)
}
"
)
def
print_help
(
self
):
"""
print function help
"""
print
(
"""Usage:
==== Print inference benchmark logs. ====
config = paddle.inference.Config()
model_info = {'model_name': 'resnet50'
'precision': 'fp32'}
data_info = {'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info = {'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info = {'cpu_rss_mb': 100
'gpu_rss_mb': 100
'gpu_util': 60}
log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
log('Test')
"""
)
def
__call__
(
self
,
identifier
=
None
):
"""
__call__
args:
identifier(string): identify log
"""
self
.
report
(
identifier
)
tools/infer/predict_cls.py
浏览文件 @
f1f5a4d2
...
@@ -48,8 +48,6 @@ class TextClassifier(object):
...
@@ -48,8 +48,6 @@ class TextClassifier(object):
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
_
=
\
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
_
=
\
utility
.
create_predictor
(
args
,
'cls'
,
logger
)
utility
.
create_predictor
(
args
,
'cls'
,
logger
)
self
.
cls_times
=
utility
.
Timer
()
def
resize_norm_img
(
self
,
img
):
def
resize_norm_img
(
self
,
img
):
imgC
,
imgH
,
imgW
=
self
.
cls_image_shape
imgC
,
imgH
,
imgW
=
self
.
cls_image_shape
h
=
img
.
shape
[
0
]
h
=
img
.
shape
[
0
]
...
@@ -85,35 +83,28 @@ class TextClassifier(object):
...
@@ -85,35 +83,28 @@ class TextClassifier(object):
cls_res
=
[[
''
,
0.0
]]
*
img_num
cls_res
=
[[
''
,
0.0
]]
*
img_num
batch_num
=
self
.
cls_batch_num
batch_num
=
self
.
cls_batch_num
elapse
=
0
elapse
=
0
self
.
cls_times
.
total_time
.
start
()
for
beg_img_no
in
range
(
0
,
img_num
,
batch_num
):
for
beg_img_no
in
range
(
0
,
img_num
,
batch_num
):
end_img_no
=
min
(
img_num
,
beg_img_no
+
batch_num
)
end_img_no
=
min
(
img_num
,
beg_img_no
+
batch_num
)
norm_img_batch
=
[]
norm_img_batch
=
[]
max_wh_ratio
=
0
max_wh_ratio
=
0
starttime
=
time
.
time
()
for
ino
in
range
(
beg_img_no
,
end_img_no
):
for
ino
in
range
(
beg_img_no
,
end_img_no
):
h
,
w
=
img_list
[
indices
[
ino
]].
shape
[
0
:
2
]
h
,
w
=
img_list
[
indices
[
ino
]].
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
wh_ratio
=
w
*
1.0
/
h
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
max_wh_ratio
=
max
(
max_wh_ratio
,
wh_ratio
)
self
.
cls_times
.
preprocess_time
.
start
()
for
ino
in
range
(
beg_img_no
,
end_img_no
):
for
ino
in
range
(
beg_img_no
,
end_img_no
):
norm_img
=
self
.
resize_norm_img
(
img_list
[
indices
[
ino
]])
norm_img
=
self
.
resize_norm_img
(
img_list
[
indices
[
ino
]])
norm_img
=
norm_img
[
np
.
newaxis
,
:]
norm_img
=
norm_img
[
np
.
newaxis
,
:]
norm_img_batch
.
append
(
norm_img
)
norm_img_batch
.
append
(
norm_img
)
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
np
.
concatenate
(
norm_img_batch
)
norm_img_batch
=
norm_img_batch
.
copy
()
norm_img_batch
=
norm_img_batch
.
copy
()
starttime
=
time
.
time
()
self
.
cls_times
.
preprocess_time
.
end
()
self
.
cls_times
.
inference_time
.
start
()
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
self
.
predictor
.
run
()
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
prob_out
=
self
.
output_tensors
[
0
].
copy_to_cpu
()
self
.
cls_times
.
inference_time
.
end
()
self
.
cls_times
.
postprocess_time
.
start
()
self
.
predictor
.
try_shrink_memory
()
self
.
predictor
.
try_shrink_memory
()
cls_result
=
self
.
postprocess_op
(
prob_out
)
cls_result
=
self
.
postprocess_op
(
prob_out
)
self
.
cls_times
.
postprocess_time
.
end
()
elapse
+=
time
.
time
()
-
starttime
elapse
+=
time
.
time
()
-
starttime
for
rno
in
range
(
len
(
cls_result
)):
for
rno
in
range
(
len
(
cls_result
)):
label
,
score
=
cls_result
[
rno
]
label
,
score
=
cls_result
[
rno
]
...
@@ -121,9 +112,7 @@ class TextClassifier(object):
...
@@ -121,9 +112,7 @@ class TextClassifier(object):
if
'180'
in
label
and
score
>
self
.
cls_thresh
:
if
'180'
in
label
and
score
>
self
.
cls_thresh
:
img_list
[
indices
[
beg_img_no
+
rno
]]
=
cv2
.
rotate
(
img_list
[
indices
[
beg_img_no
+
rno
]]
=
cv2
.
rotate
(
img_list
[
indices
[
beg_img_no
+
rno
]],
1
)
img_list
[
indices
[
beg_img_no
+
rno
]],
1
)
self
.
cls_times
.
total_time
.
end
()
elapse
=
time
.
time
()
-
starttime
self
.
cls_times
.
img_num
+=
img_num
elapse
=
self
.
cls_times
.
total_time
.
value
()
return
img_list
,
cls_res
,
elapse
return
img_list
,
cls_res
,
elapse
...
...
tools/infer/predict_det.py
浏览文件 @
f1f5a4d2
...
@@ -31,8 +31,6 @@ from ppocr.utils.utility import get_image_file_list, check_and_read_gif
...
@@ -31,8 +31,6 @@ from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from
ppocr.data
import
create_operators
,
transform
from
ppocr.data
import
create_operators
,
transform
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
# import tools.infer.benchmark_utils as benchmark_utils
logger
=
get_logger
()
logger
=
get_logger
()
...
...
tools/infer/predict_rec.py
浏览文件 @
f1f5a4d2
...
@@ -28,7 +28,6 @@ import traceback
...
@@ -28,7 +28,6 @@ import traceback
import
paddle
import
paddle
import
tools.infer.utility
as
utility
import
tools.infer.utility
as
utility
import
tools.infer.benchmark_utils
as
benchmark_utils
from
ppocr.postprocess
import
build_post_process
from
ppocr.postprocess
import
build_post_process
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
...
@@ -66,8 +65,6 @@ class TextRecognizer(object):
...
@@ -66,8 +65,6 @@ class TextRecognizer(object):
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
self
.
config
=
\
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
self
.
config
=
\
utility
.
create_predictor
(
args
,
'rec'
,
logger
)
utility
.
create_predictor
(
args
,
'rec'
,
logger
)
self
.
rec_times
=
utility
.
Timer
()
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
def
resize_norm_img
(
self
,
img
,
max_wh_ratio
):
imgC
,
imgH
,
imgW
=
self
.
rec_image_shape
imgC
,
imgH
,
imgW
=
self
.
rec_image_shape
assert
imgC
==
img
.
shape
[
2
]
assert
imgC
==
img
.
shape
[
2
]
...
@@ -168,14 +165,13 @@ class TextRecognizer(object):
...
@@ -168,14 +165,13 @@ class TextRecognizer(object):
width_list
.
append
(
img
.
shape
[
1
]
/
float
(
img
.
shape
[
0
]))
width_list
.
append
(
img
.
shape
[
1
]
/
float
(
img
.
shape
[
0
]))
# Sorting can speed up the recognition process
# Sorting can speed up the recognition process
indices
=
np
.
argsort
(
np
.
array
(
width_list
))
indices
=
np
.
argsort
(
np
.
array
(
width_list
))
self
.
rec_times
.
total_time
.
start
()
rec_res
=
[[
''
,
0.0
]]
*
img_num
rec_res
=
[[
''
,
0.0
]]
*
img_num
batch_num
=
self
.
rec_batch_num
batch_num
=
self
.
rec_batch_num
st
=
time
.
time
()
for
beg_img_no
in
range
(
0
,
img_num
,
batch_num
):
for
beg_img_no
in
range
(
0
,
img_num
,
batch_num
):
end_img_no
=
min
(
img_num
,
beg_img_no
+
batch_num
)
end_img_no
=
min
(
img_num
,
beg_img_no
+
batch_num
)
norm_img_batch
=
[]
norm_img_batch
=
[]
max_wh_ratio
=
0
max_wh_ratio
=
0
self
.
rec_times
.
preprocess_time
.
start
()
for
ino
in
range
(
beg_img_no
,
end_img_no
):
for
ino
in
range
(
beg_img_no
,
end_img_no
):
h
,
w
=
img_list
[
indices
[
ino
]].
shape
[
0
:
2
]
h
,
w
=
img_list
[
indices
[
ino
]].
shape
[
0
:
2
]
wh_ratio
=
w
*
1.0
/
h
wh_ratio
=
w
*
1.0
/
h
...
@@ -216,23 +212,18 @@ class TextRecognizer(object):
...
@@ -216,23 +212,18 @@ class TextRecognizer(object):
gsrm_slf_attn_bias1_list
,
gsrm_slf_attn_bias1_list
,
gsrm_slf_attn_bias2_list
,
gsrm_slf_attn_bias2_list
,
]
]
self
.
rec_times
.
preprocess_time
.
end
()
self
.
rec_times
.
inference_time
.
start
()
input_names
=
self
.
predictor
.
get_input_names
()
input_names
=
self
.
predictor
.
get_input_names
()
for
i
in
range
(
len
(
input_names
)):
for
i
in
range
(
len
(
input_names
)):
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
input_tensor
=
self
.
predictor
.
get_input_handle
(
input_names
[
i
])
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
i
])
input_tensor
.
copy_from_cpu
(
inputs
[
i
])
self
.
predictor
.
run
()
self
.
predictor
.
run
()
self
.
rec_times
.
inference_time
.
end
()
outputs
=
[]
outputs
=
[]
for
output_tensor
in
self
.
output_tensors
:
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
outputs
.
append
(
output
)
preds
=
{
"predict"
:
outputs
[
2
]}
preds
=
{
"predict"
:
outputs
[
2
]}
else
:
else
:
self
.
rec_times
.
preprocess_time
.
end
()
self
.
rec_times
.
inference_time
.
start
()
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
input_tensor
.
copy_from_cpu
(
norm_img_batch
)
self
.
predictor
.
run
()
self
.
predictor
.
run
()
...
@@ -241,15 +232,11 @@ class TextRecognizer(object):
...
@@ -241,15 +232,11 @@ class TextRecognizer(object):
output
=
output_tensor
.
copy_to_cpu
()
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
outputs
.
append
(
output
)
preds
=
outputs
[
0
]
preds
=
outputs
[
0
]
self
.
rec_times
.
inference_time
.
end
()
self
.
rec_times
.
postprocess_time
.
start
()
rec_result
=
self
.
postprocess_op
(
preds
)
rec_result
=
self
.
postprocess_op
(
preds
)
for
rno
in
range
(
len
(
rec_result
)):
for
rno
in
range
(
len
(
rec_result
)):
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
rec_result
[
rno
]
rec_res
[
indices
[
beg_img_no
+
rno
]]
=
rec_result
[
rno
]
self
.
rec_times
.
postprocess_time
.
end
()
self
.
rec_times
.
img_num
+=
int
(
norm_img_batch
.
shape
[
0
])
return
rec_res
,
time
.
time
()
-
st
self
.
rec_times
.
total_time
.
end
()
return
rec_res
,
self
.
rec_times
.
total_time
.
value
()
def
main
(
args
):
def
main
(
args
):
...
@@ -278,12 +265,6 @@ def main(args):
...
@@ -278,12 +265,6 @@ def main(args):
img_list
.
append
(
img
)
img_list
.
append
(
img
)
try
:
try
:
rec_res
,
_
=
text_recognizer
(
img_list
)
rec_res
,
_
=
text_recognizer
(
img_list
)
if
args
.
benchmark
:
cm
,
gm
,
gu
=
utility
.
get_current_memory_mb
(
0
)
cpu_mem
+=
cm
gpu_mem
+=
gm
gpu_util
+=
gu
count
+=
1
except
Exception
as
E
:
except
Exception
as
E
:
logger
.
info
(
traceback
.
format_exc
())
logger
.
info
(
traceback
.
format_exc
())
...
@@ -292,39 +273,6 @@ def main(args):
...
@@ -292,39 +273,6 @@ def main(args):
for
ino
in
range
(
len
(
img_list
)):
for
ino
in
range
(
len
(
img_list
)):
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
logger
.
info
(
"Predicts of {}:{}"
.
format
(
valid_image_file_list
[
ino
],
rec_res
[
ino
]))
rec_res
[
ino
]))
if
args
.
benchmark
:
mems
=
{
'cpu_rss_mb'
:
cpu_mem
/
count
,
'gpu_rss_mb'
:
gpu_mem
/
count
,
'gpu_util'
:
gpu_util
*
100
/
count
}
else
:
mems
=
None
logger
.
info
(
"The predict time about recognizer module is as follows: "
)
rec_time_dict
=
text_recognizer
.
rec_times
.
report
(
average
=
True
)
rec_model_name
=
args
.
rec_model_dir
if
args
.
benchmark
:
# construct log information
model_info
=
{
'model_name'
:
args
.
rec_model_dir
.
split
(
'/'
)[
-
1
],
'precision'
:
args
.
precision
}
data_info
=
{
'batch_size'
:
args
.
rec_batch_num
,
'shape'
:
'dynamic_shape'
,
'data_num'
:
rec_time_dict
[
'img_num'
]
}
perf_info
=
{
'preprocess_time_s'
:
rec_time_dict
[
'preprocess_time'
],
'inference_time_s'
:
rec_time_dict
[
'inference_time'
],
'postprocess_time_s'
:
rec_time_dict
[
'postprocess_time'
],
'total_time_s'
:
rec_time_dict
[
'total_time'
]
}
benchmark_log
=
benchmark_utils
.
PaddleInferBenchmark
(
text_recognizer
.
config
,
model_info
,
data_info
,
perf_info
,
mems
,
args
.
save_log_path
)
benchmark_log
(
"Rec"
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
tools/infer/predict_system.py
浏览文件 @
f1f5a4d2
...
@@ -33,8 +33,7 @@ import tools.infer.predict_det as predict_det
...
@@ -33,8 +33,7 @@ import tools.infer.predict_det as predict_det
import
tools.infer.predict_cls
as
predict_cls
import
tools.infer.predict_cls
as
predict_cls
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.utils.utility
import
get_image_file_list
,
check_and_read_gif
from
ppocr.utils.logging
import
get_logger
from
ppocr.utils.logging
import
get_logger
from
tools.infer.utility
import
draw_ocr_box_txt
,
get_current_memory_mb
,
get_rotate_crop_image
from
tools.infer.utility
import
draw_ocr_box_txt
,
get_rotate_crop_image
import
tools.infer.benchmark_utils
as
benchmark_utils
logger
=
get_logger
()
logger
=
get_logger
()
...
@@ -142,12 +141,6 @@ def main(args):
...
@@ -142,12 +141,6 @@ def main(args):
dt_boxes
,
rec_res
=
text_sys
(
img
)
dt_boxes
,
rec_res
=
text_sys
(
img
)
elapse
=
time
.
time
()
-
starttime
elapse
=
time
.
time
()
-
starttime
total_time
+=
elapse
total_time
+=
elapse
if
args
.
benchmark
and
idx
%
20
==
0
:
cm
,
gm
,
gu
=
get_current_memory_mb
(
0
)
cpu_mem
+=
cm
gpu_mem
+=
gm
gpu_util
+=
gu
count
+=
1
logger
.
info
(
logger
.
info
(
str
(
idx
)
+
" Predict time of %s: %.3fs"
%
(
image_file
,
elapse
))
str
(
idx
)
+
" Predict time of %s: %.3fs"
%
(
image_file
,
elapse
))
...
@@ -182,61 +175,6 @@ def main(args):
...
@@ -182,61 +175,6 @@ def main(args):
logger
.
info
(
"
\n
The predict total time is {}"
.
format
(
total_time
))
logger
.
info
(
"
\n
The predict total time is {}"
.
format
(
total_time
))
img_num
=
text_sys
.
text_detector
.
det_times
.
img_num
img_num
=
text_sys
.
text_detector
.
det_times
.
img_num
if
args
.
benchmark
:
mems
=
{
'cpu_rss_mb'
:
cpu_mem
/
count
,
'gpu_rss_mb'
:
gpu_mem
/
count
,
'gpu_util'
:
gpu_util
*
100
/
count
}
else
:
mems
=
None
det_time_dict
=
text_sys
.
text_detector
.
det_times
.
report
(
average
=
True
)
rec_time_dict
=
text_sys
.
text_recognizer
.
rec_times
.
report
(
average
=
True
)
det_model_name
=
args
.
det_model_dir
rec_model_name
=
args
.
rec_model_dir
# construct det log information
model_info
=
{
'model_name'
:
args
.
det_model_dir
.
split
(
'/'
)[
-
1
],
'precision'
:
args
.
precision
}
data_info
=
{
'batch_size'
:
1
,
'shape'
:
'dynamic_shape'
,
'data_num'
:
det_time_dict
[
'img_num'
]
}
perf_info
=
{
'preprocess_time_s'
:
det_time_dict
[
'preprocess_time'
],
'inference_time_s'
:
det_time_dict
[
'inference_time'
],
'postprocess_time_s'
:
det_time_dict
[
'postprocess_time'
],
'total_time_s'
:
det_time_dict
[
'total_time'
]
}
benchmark_log
=
benchmark_utils
.
PaddleInferBenchmark
(
text_sys
.
text_detector
.
config
,
model_info
,
data_info
,
perf_info
,
mems
,
args
.
save_log_path
)
benchmark_log
(
"Det"
)
# construct rec log information
model_info
=
{
'model_name'
:
args
.
rec_model_dir
.
split
(
'/'
)[
-
1
],
'precision'
:
args
.
precision
}
data_info
=
{
'batch_size'
:
args
.
rec_batch_num
,
'shape'
:
'dynamic_shape'
,
'data_num'
:
rec_time_dict
[
'img_num'
]
}
perf_info
=
{
'preprocess_time_s'
:
rec_time_dict
[
'preprocess_time'
],
'inference_time_s'
:
rec_time_dict
[
'inference_time'
],
'postprocess_time_s'
:
rec_time_dict
[
'postprocess_time'
],
'total_time_s'
:
rec_time_dict
[
'total_time'
]
}
benchmark_log
=
benchmark_utils
.
PaddleInferBenchmark
(
text_sys
.
text_recognizer
.
config
,
model_info
,
data_info
,
perf_info
,
mems
,
args
.
save_log_path
)
benchmark_log
(
"Rec"
)
if
__name__
==
"__main__"
:
if
__name__
==
"__main__"
:
...
...
tools/infer/utility.py
浏览文件 @
f1f5a4d2
...
@@ -125,76 +125,6 @@ def parse_args():
...
@@ -125,76 +125,6 @@ def parse_args():
return
parser
.
parse_args
()
return
parser
.
parse_args
()
class
Times
(
object
):
def
__init__
(
self
):
self
.
time
=
0.
self
.
st
=
0.
self
.
et
=
0.
def
start
(
self
):
self
.
st
=
time
.
time
()
def
end
(
self
,
accumulative
=
True
):
self
.
et
=
time
.
time
()
if
accumulative
:
self
.
time
+=
self
.
et
-
self
.
st
else
:
self
.
time
=
self
.
et
-
self
.
st
def
reset
(
self
):
self
.
time
=
0.
self
.
st
=
0.
self
.
et
=
0.
def
value
(
self
):
return
round
(
self
.
time
,
4
)
class
Timer
(
Times
):
def
__init__
(
self
):
super
(
Timer
,
self
).
__init__
()
self
.
total_time
=
Times
()
self
.
preprocess_time
=
Times
()
self
.
inference_time
=
Times
()
self
.
postprocess_time
=
Times
()
self
.
img_num
=
0
def
info
(
self
,
average
=
False
):
logger
.
info
(
"----------------------- Perf info -----------------------"
)
logger
.
info
(
"total_time: {}, img_num: {}"
.
format
(
self
.
total_time
.
value
(
),
self
.
img_num
))
preprocess_time
=
round
(
self
.
preprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
preprocess_time
.
value
()
postprocess_time
=
round
(
self
.
postprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
postprocess_time
.
value
()
inference_time
=
round
(
self
.
inference_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
inference_time
.
value
()
average_latency
=
self
.
total_time
.
value
()
/
self
.
img_num
logger
.
info
(
"average_latency(ms): {:.2f}, QPS: {:2f}"
.
format
(
average_latency
*
1000
,
1
/
average_latency
))
logger
.
info
(
"preprocess_latency(ms): {:.2f}, inference_latency(ms): {:.2f}, postprocess_latency(ms): {:.2f}"
.
format
(
preprocess_time
*
1000
,
inference_time
*
1000
,
postprocess_time
*
1000
))
def
report
(
self
,
average
=
False
):
dic
=
{}
dic
[
'preprocess_time'
]
=
round
(
self
.
preprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
preprocess_time
.
value
()
dic
[
'postprocess_time'
]
=
round
(
self
.
postprocess_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
postprocess_time
.
value
()
dic
[
'inference_time'
]
=
round
(
self
.
inference_time
.
value
()
/
self
.
img_num
,
4
)
if
average
else
self
.
inference_time
.
value
()
dic
[
'img_num'
]
=
self
.
img_num
dic
[
'total_time'
]
=
round
(
self
.
total_time
.
value
(),
4
)
return
dic
def
create_predictor
(
args
,
mode
,
logger
):
def
create_predictor
(
args
,
mode
,
logger
):
if
mode
==
"det"
:
if
mode
==
"det"
:
model_dir
=
args
.
det_model_dir
model_dir
=
args
.
det_model_dir
...
@@ -213,11 +143,10 @@ def create_predictor(args, mode, logger):
...
@@ -213,11 +143,10 @@ def create_predictor(args, mode, logger):
model_file_path
=
model_dir
+
"/inference.pdmodel"
model_file_path
=
model_dir
+
"/inference.pdmodel"
params_file_path
=
model_dir
+
"/inference.pdiparams"
params_file_path
=
model_dir
+
"/inference.pdiparams"
if
not
os
.
path
.
exists
(
model_file_path
):
if
not
os
.
path
.
exists
(
model_file_path
):
logger
.
info
(
"not find model file path {}"
.
format
(
model_file_path
))
raise
ValueError
(
"not find model file path {}"
.
format
(
model_file_path
))
sys
.
exit
(
0
)
if
not
os
.
path
.
exists
(
params_file_path
):
if
not
os
.
path
.
exists
(
params_file_path
):
logger
.
info
(
"not find params file path {}"
.
format
(
params_file_path
))
raise
ValueError
(
"not find params file path {}"
.
format
(
sys
.
exit
(
0
)
params_file_path
)
)
config
=
inference
.
Config
(
model_file_path
,
params_file_path
)
config
=
inference
.
Config
(
model_file_path
,
params_file_path
)
...
@@ -577,65 +506,5 @@ def draw_boxes(image, boxes, scores=None, drop_score=0.5):
...
@@ -577,65 +506,5 @@ def draw_boxes(image, boxes, scores=None, drop_score=0.5):
return
image
return
image
def
get_current_memory_mb
(
gpu_id
=
None
):
"""
It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
And this function Current program is time-consuming.
"""
import
pynvml
import
psutil
import
GPUtil
pid
=
os
.
getpid
()
p
=
psutil
.
Process
(
pid
)
info
=
p
.
memory_full_info
()
cpu_mem
=
info
.
uss
/
1024.
/
1024.
gpu_mem
=
0
gpu_percent
=
0
if
gpu_id
is
not
None
:
GPUs
=
GPUtil
.
getGPUs
()
gpu_load
=
GPUs
[
gpu_id
].
load
gpu_percent
=
gpu_load
pynvml
.
nvmlInit
()
handle
=
pynvml
.
nvmlDeviceGetHandleByIndex
(
0
)
meminfo
=
pynvml
.
nvmlDeviceGetMemoryInfo
(
handle
)
gpu_mem
=
meminfo
.
used
/
1024.
/
1024.
return
round
(
cpu_mem
,
4
),
round
(
gpu_mem
,
4
),
round
(
gpu_percent
,
4
)
def
get_rotate_crop_image
(
img
,
points
):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
assert
len
(
points
)
==
4
,
"shape of points must be 4*2"
img_crop_width
=
int
(
max
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
1
]),
np
.
linalg
.
norm
(
points
[
2
]
-
points
[
3
])))
img_crop_height
=
int
(
max
(
np
.
linalg
.
norm
(
points
[
0
]
-
points
[
3
]),
np
.
linalg
.
norm
(
points
[
1
]
-
points
[
2
])))
pts_std
=
np
.
float32
([[
0
,
0
],
[
img_crop_width
,
0
],
[
img_crop_width
,
img_crop_height
],
[
0
,
img_crop_height
]])
M
=
cv2
.
getPerspectiveTransform
(
points
,
pts_std
)
dst_img
=
cv2
.
warpPerspective
(
img
,
M
,
(
img_crop_width
,
img_crop_height
),
borderMode
=
cv2
.
BORDER_REPLICATE
,
flags
=
cv2
.
INTER_CUBIC
)
dst_img_height
,
dst_img_width
=
dst_img
.
shape
[
0
:
2
]
if
dst_img_height
*
1.0
/
dst_img_width
>=
1.5
:
dst_img
=
np
.
rot90
(
dst_img
)
return
dst_img
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
pass
pass
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录