提交 f1f5a4d2 编写于 作者: W WenmuZhou

merge dygraph

# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
import logging
import paddle
import paddle.inference as paddle_infer
from pathlib import Path
CUR_DIR = os.path.dirname(os.path.abspath(__file__))
class PaddleInferBenchmark(object):
def __init__(self,
config,
model_info: dict={},
data_info: dict={},
perf_info: dict={},
resource_info: dict={},
save_log_path: str="",
**kwargs):
"""
Construct PaddleInferBenchmark Class to format logs.
args:
config(paddle.inference.Config): paddle inference config
model_info(dict): basic model info
{'model_name': 'resnet50'
'precision': 'fp32'}
data_info(dict): input data info
{'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info(dict): performance result
{'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info(dict):
cpu and gpu resources
{'cpu_rss': 100
'gpu_rss': 100
'gpu_util': 60}
"""
# PaddleInferBenchmark Log Version
self.log_version = 1.0
# Paddle Version
self.paddle_version = paddle.__version__
self.paddle_commit = paddle.__git_commit__
paddle_infer_info = paddle_infer.get_version()
self.paddle_branch = paddle_infer_info.strip().split(': ')[-1]
# model info
self.model_info = model_info
# data info
self.data_info = data_info
# perf info
self.perf_info = perf_info
try:
self.model_name = model_info['model_name']
self.precision = model_info['precision']
self.batch_size = data_info['batch_size']
self.shape = data_info['shape']
self.data_num = data_info['data_num']
self.preprocess_time_s = round(perf_info['preprocess_time_s'], 4)
self.inference_time_s = round(perf_info['inference_time_s'], 4)
self.postprocess_time_s = round(perf_info['postprocess_time_s'], 4)
self.total_time_s = round(perf_info['total_time_s'], 4)
except:
self.print_help()
raise ValueError(
"Set argument wrong, please check input argument and its type")
# conf info
self.config_status = self.parse_config(config)
self.save_log_path = save_log_path
# mem info
if isinstance(resource_info, dict):
self.cpu_rss_mb = int(resource_info.get('cpu_rss_mb', 0))
self.gpu_rss_mb = int(resource_info.get('gpu_rss_mb', 0))
self.gpu_util = round(resource_info.get('gpu_util', 0), 2)
else:
self.cpu_rss_mb = 0
self.gpu_rss_mb = 0
self.gpu_util = 0
# init benchmark logger
self.benchmark_logger()
def benchmark_logger(self):
"""
benchmark logger
"""
# Init logger
FORMAT = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
log_output = f"{self.save_log_path}/{self.model_name}.log"
Path(f"{self.save_log_path}").mkdir(parents=True, exist_ok=True)
logging.basicConfig(
level=logging.INFO,
format=FORMAT,
handlers=[
logging.FileHandler(
filename=log_output, mode='w'),
logging.StreamHandler(),
])
self.logger = logging.getLogger(__name__)
self.logger.info(
f"Paddle Inference benchmark log will be saved to {log_output}")
def parse_config(self, config) -> dict:
"""
parse paddle predictor config
args:
config(paddle.inference.Config): paddle inference config
return:
config_status(dict): dict style config info
"""
config_status = {}
config_status['runtime_device'] = "gpu" if config.use_gpu() else "cpu"
config_status['ir_optim'] = config.ir_optim()
config_status['enable_tensorrt'] = config.tensorrt_engine_enabled()
config_status['precision'] = self.precision
config_status['enable_mkldnn'] = config.mkldnn_enabled()
config_status[
'cpu_math_library_num_threads'] = config.cpu_math_library_num_threads(
)
return config_status
def report(self, identifier=None):
"""
print log report
args:
identifier(string): identify log
"""
if identifier:
identifier = f"[{identifier}]"
else:
identifier = ""
self.logger.info("\n")
self.logger.info(
"---------------------- Paddle info ----------------------")
self.logger.info(f"{identifier} paddle_version: {self.paddle_version}")
self.logger.info(f"{identifier} paddle_commit: {self.paddle_commit}")
self.logger.info(f"{identifier} paddle_branch: {self.paddle_branch}")
self.logger.info(f"{identifier} log_api_version: {self.log_version}")
self.logger.info(
"----------------------- Conf info -----------------------")
self.logger.info(
f"{identifier} runtime_device: {self.config_status['runtime_device']}"
)
self.logger.info(
f"{identifier} ir_optim: {self.config_status['ir_optim']}")
self.logger.info(f"{identifier} enable_memory_optim: {True}")
self.logger.info(
f"{identifier} enable_tensorrt: {self.config_status['enable_tensorrt']}"
)
self.logger.info(
f"{identifier} enable_mkldnn: {self.config_status['enable_mkldnn']}")
self.logger.info(
f"{identifier} cpu_math_library_num_threads: {self.config_status['cpu_math_library_num_threads']}"
)
self.logger.info(
"----------------------- Model info ----------------------")
self.logger.info(f"{identifier} model_name: {self.model_name}")
self.logger.info(f"{identifier} precision: {self.precision}")
self.logger.info(
"----------------------- Data info -----------------------")
self.logger.info(f"{identifier} batch_size: {self.batch_size}")
self.logger.info(f"{identifier} input_shape: {self.shape}")
self.logger.info(f"{identifier} data_num: {self.data_num}")
self.logger.info(
"----------------------- Perf info -----------------------")
self.logger.info(
f"{identifier} cpu_rss(MB): {self.cpu_rss_mb}, gpu_rss(MB): {self.gpu_rss_mb}, gpu_util: {self.gpu_util}%"
)
self.logger.info(
f"{identifier} total time spent(s): {self.total_time_s}")
self.logger.info(
f"{identifier} preprocess_time(ms): {round(self.preprocess_time_s*1000, 1)}, inference_time(ms): {round(self.inference_time_s*1000, 1)}, postprocess_time(ms): {round(self.postprocess_time_s*1000, 1)}"
)
def print_help(self):
"""
print function help
"""
print("""Usage:
==== Print inference benchmark logs. ====
config = paddle.inference.Config()
model_info = {'model_name': 'resnet50'
'precision': 'fp32'}
data_info = {'batch_size': 1
'shape': '3,224,224'
'data_num': 1000}
perf_info = {'preprocess_time_s': 1.0
'inference_time_s': 2.0
'postprocess_time_s': 1.0
'total_time_s': 4.0}
resource_info = {'cpu_rss_mb': 100
'gpu_rss_mb': 100
'gpu_util': 60}
log = PaddleInferBenchmark(config, model_info, data_info, perf_info, resource_info)
log('Test')
""")
def __call__(self, identifier=None):
"""
__call__
args:
identifier(string): identify log
"""
self.report(identifier)
...@@ -48,8 +48,6 @@ class TextClassifier(object): ...@@ -48,8 +48,6 @@ class TextClassifier(object):
self.predictor, self.input_tensor, self.output_tensors, _ = \ self.predictor, self.input_tensor, self.output_tensors, _ = \
utility.create_predictor(args, 'cls', logger) utility.create_predictor(args, 'cls', logger)
self.cls_times = utility.Timer()
def resize_norm_img(self, img): def resize_norm_img(self, img):
imgC, imgH, imgW = self.cls_image_shape imgC, imgH, imgW = self.cls_image_shape
h = img.shape[0] h = img.shape[0]
...@@ -85,35 +83,28 @@ class TextClassifier(object): ...@@ -85,35 +83,28 @@ class TextClassifier(object):
cls_res = [['', 0.0]] * img_num cls_res = [['', 0.0]] * img_num
batch_num = self.cls_batch_num batch_num = self.cls_batch_num
elapse = 0 elapse = 0
self.cls_times.total_time.start()
for beg_img_no in range(0, img_num, batch_num): for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num) end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = [] norm_img_batch = []
max_wh_ratio = 0 max_wh_ratio = 0
starttime = time.time()
for ino in range(beg_img_no, end_img_no): for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2] h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio) max_wh_ratio = max(max_wh_ratio, wh_ratio)
self.cls_times.preprocess_time.start()
for ino in range(beg_img_no, end_img_no): for ino in range(beg_img_no, end_img_no):
norm_img = self.resize_norm_img(img_list[indices[ino]]) norm_img = self.resize_norm_img(img_list[indices[ino]])
norm_img = norm_img[np.newaxis, :] norm_img = norm_img[np.newaxis, :]
norm_img_batch.append(norm_img) norm_img_batch.append(norm_img)
norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy() norm_img_batch = norm_img_batch.copy()
starttime = time.time()
self.cls_times.preprocess_time.end()
self.cls_times.inference_time.start()
self.input_tensor.copy_from_cpu(norm_img_batch) self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run() self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu() prob_out = self.output_tensors[0].copy_to_cpu()
self.cls_times.inference_time.end()
self.cls_times.postprocess_time.start()
self.predictor.try_shrink_memory() self.predictor.try_shrink_memory()
cls_result = self.postprocess_op(prob_out) cls_result = self.postprocess_op(prob_out)
self.cls_times.postprocess_time.end()
elapse += time.time() - starttime elapse += time.time() - starttime
for rno in range(len(cls_result)): for rno in range(len(cls_result)):
label, score = cls_result[rno] label, score = cls_result[rno]
...@@ -121,9 +112,7 @@ class TextClassifier(object): ...@@ -121,9 +112,7 @@ class TextClassifier(object):
if '180' in label and score > self.cls_thresh: if '180' in label and score > self.cls_thresh:
img_list[indices[beg_img_no + rno]] = cv2.rotate( img_list[indices[beg_img_no + rno]] = cv2.rotate(
img_list[indices[beg_img_no + rno]], 1) img_list[indices[beg_img_no + rno]], 1)
self.cls_times.total_time.end() elapse = time.time() - starttime
self.cls_times.img_num += img_num
elapse = self.cls_times.total_time.value()
return img_list, cls_res, elapse return img_list, cls_res, elapse
......
...@@ -31,8 +31,6 @@ from ppocr.utils.utility import get_image_file_list, check_and_read_gif ...@@ -31,8 +31,6 @@ from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.data import create_operators, transform from ppocr.data import create_operators, transform
from ppocr.postprocess import build_post_process from ppocr.postprocess import build_post_process
# import tools.infer.benchmark_utils as benchmark_utils
logger = get_logger() logger = get_logger()
......
...@@ -28,7 +28,6 @@ import traceback ...@@ -28,7 +28,6 @@ import traceback
import paddle import paddle
import tools.infer.utility as utility import tools.infer.utility as utility
import tools.infer.benchmark_utils as benchmark_utils
from ppocr.postprocess import build_post_process from ppocr.postprocess import build_post_process
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
from ppocr.utils.utility import get_image_file_list, check_and_read_gif from ppocr.utils.utility import get_image_file_list, check_and_read_gif
...@@ -66,8 +65,6 @@ class TextRecognizer(object): ...@@ -66,8 +65,6 @@ class TextRecognizer(object):
self.predictor, self.input_tensor, self.output_tensors, self.config = \ self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'rec', logger) utility.create_predictor(args, 'rec', logger)
self.rec_times = utility.Timer()
def resize_norm_img(self, img, max_wh_ratio): def resize_norm_img(self, img, max_wh_ratio):
imgC, imgH, imgW = self.rec_image_shape imgC, imgH, imgW = self.rec_image_shape
assert imgC == img.shape[2] assert imgC == img.shape[2]
...@@ -168,14 +165,13 @@ class TextRecognizer(object): ...@@ -168,14 +165,13 @@ class TextRecognizer(object):
width_list.append(img.shape[1] / float(img.shape[0])) width_list.append(img.shape[1] / float(img.shape[0]))
# Sorting can speed up the recognition process # Sorting can speed up the recognition process
indices = np.argsort(np.array(width_list)) indices = np.argsort(np.array(width_list))
self.rec_times.total_time.start()
rec_res = [['', 0.0]] * img_num rec_res = [['', 0.0]] * img_num
batch_num = self.rec_batch_num batch_num = self.rec_batch_num
st = time.time()
for beg_img_no in range(0, img_num, batch_num): for beg_img_no in range(0, img_num, batch_num):
end_img_no = min(img_num, beg_img_no + batch_num) end_img_no = min(img_num, beg_img_no + batch_num)
norm_img_batch = [] norm_img_batch = []
max_wh_ratio = 0 max_wh_ratio = 0
self.rec_times.preprocess_time.start()
for ino in range(beg_img_no, end_img_no): for ino in range(beg_img_no, end_img_no):
h, w = img_list[indices[ino]].shape[0:2] h, w = img_list[indices[ino]].shape[0:2]
wh_ratio = w * 1.0 / h wh_ratio = w * 1.0 / h
...@@ -216,23 +212,18 @@ class TextRecognizer(object): ...@@ -216,23 +212,18 @@ class TextRecognizer(object):
gsrm_slf_attn_bias1_list, gsrm_slf_attn_bias1_list,
gsrm_slf_attn_bias2_list, gsrm_slf_attn_bias2_list,
] ]
self.rec_times.preprocess_time.end()
self.rec_times.inference_time.start()
input_names = self.predictor.get_input_names() input_names = self.predictor.get_input_names()
for i in range(len(input_names)): for i in range(len(input_names)):
input_tensor = self.predictor.get_input_handle(input_names[ input_tensor = self.predictor.get_input_handle(input_names[
i]) i])
input_tensor.copy_from_cpu(inputs[i]) input_tensor.copy_from_cpu(inputs[i])
self.predictor.run() self.predictor.run()
self.rec_times.inference_time.end()
outputs = [] outputs = []
for output_tensor in self.output_tensors: for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu() output = output_tensor.copy_to_cpu()
outputs.append(output) outputs.append(output)
preds = {"predict": outputs[2]} preds = {"predict": outputs[2]}
else: else:
self.rec_times.preprocess_time.end()
self.rec_times.inference_time.start()
self.input_tensor.copy_from_cpu(norm_img_batch) self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run() self.predictor.run()
...@@ -241,15 +232,11 @@ class TextRecognizer(object): ...@@ -241,15 +232,11 @@ class TextRecognizer(object):
output = output_tensor.copy_to_cpu() output = output_tensor.copy_to_cpu()
outputs.append(output) outputs.append(output)
preds = outputs[0] preds = outputs[0]
self.rec_times.inference_time.end()
self.rec_times.postprocess_time.start()
rec_result = self.postprocess_op(preds) rec_result = self.postprocess_op(preds)
for rno in range(len(rec_result)): for rno in range(len(rec_result)):
rec_res[indices[beg_img_no + rno]] = rec_result[rno] rec_res[indices[beg_img_no + rno]] = rec_result[rno]
self.rec_times.postprocess_time.end()
self.rec_times.img_num += int(norm_img_batch.shape[0]) return rec_res, time.time() - st
self.rec_times.total_time.end()
return rec_res, self.rec_times.total_time.value()
def main(args): def main(args):
...@@ -278,12 +265,6 @@ def main(args): ...@@ -278,12 +265,6 @@ def main(args):
img_list.append(img) img_list.append(img)
try: try:
rec_res, _ = text_recognizer(img_list) rec_res, _ = text_recognizer(img_list)
if args.benchmark:
cm, gm, gu = utility.get_current_memory_mb(0)
cpu_mem += cm
gpu_mem += gm
gpu_util += gu
count += 1
except Exception as E: except Exception as E:
logger.info(traceback.format_exc()) logger.info(traceback.format_exc())
...@@ -292,39 +273,6 @@ def main(args): ...@@ -292,39 +273,6 @@ def main(args):
for ino in range(len(img_list)): for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
rec_res[ino])) rec_res[ino]))
if args.benchmark:
mems = {
'cpu_rss_mb': cpu_mem / count,
'gpu_rss_mb': gpu_mem / count,
'gpu_util': gpu_util * 100 / count
}
else:
mems = None
logger.info("The predict time about recognizer module is as follows: ")
rec_time_dict = text_recognizer.rec_times.report(average=True)
rec_model_name = args.rec_model_dir
if args.benchmark:
# construct log information
model_info = {
'model_name': args.rec_model_dir.split('/')[-1],
'precision': args.precision
}
data_info = {
'batch_size': args.rec_batch_num,
'shape': 'dynamic_shape',
'data_num': rec_time_dict['img_num']
}
perf_info = {
'preprocess_time_s': rec_time_dict['preprocess_time'],
'inference_time_s': rec_time_dict['inference_time'],
'postprocess_time_s': rec_time_dict['postprocess_time'],
'total_time_s': rec_time_dict['total_time']
}
benchmark_log = benchmark_utils.PaddleInferBenchmark(
text_recognizer.config, model_info, data_info, perf_info, mems,
args.save_log_path)
benchmark_log("Rec")
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -33,8 +33,7 @@ import tools.infer.predict_det as predict_det ...@@ -33,8 +33,7 @@ import tools.infer.predict_det as predict_det
import tools.infer.predict_cls as predict_cls import tools.infer.predict_cls as predict_cls
from ppocr.utils.utility import get_image_file_list, check_and_read_gif from ppocr.utils.utility import get_image_file_list, check_and_read_gif
from ppocr.utils.logging import get_logger from ppocr.utils.logging import get_logger
from tools.infer.utility import draw_ocr_box_txt, get_current_memory_mb, get_rotate_crop_image from tools.infer.utility import draw_ocr_box_txt, get_rotate_crop_image
import tools.infer.benchmark_utils as benchmark_utils
logger = get_logger() logger = get_logger()
...@@ -142,12 +141,6 @@ def main(args): ...@@ -142,12 +141,6 @@ def main(args):
dt_boxes, rec_res = text_sys(img) dt_boxes, rec_res = text_sys(img)
elapse = time.time() - starttime elapse = time.time() - starttime
total_time += elapse total_time += elapse
if args.benchmark and idx % 20 == 0:
cm, gm, gu = get_current_memory_mb(0)
cpu_mem += cm
gpu_mem += gm
gpu_util += gu
count += 1
logger.info( logger.info(
str(idx) + " Predict time of %s: %.3fs" % (image_file, elapse)) str(idx) + " Predict time of %s: %.3fs" % (image_file, elapse))
...@@ -182,61 +175,6 @@ def main(args): ...@@ -182,61 +175,6 @@ def main(args):
logger.info("\nThe predict total time is {}".format(total_time)) logger.info("\nThe predict total time is {}".format(total_time))
img_num = text_sys.text_detector.det_times.img_num img_num = text_sys.text_detector.det_times.img_num
if args.benchmark:
mems = {
'cpu_rss_mb': cpu_mem / count,
'gpu_rss_mb': gpu_mem / count,
'gpu_util': gpu_util * 100 / count
}
else:
mems = None
det_time_dict = text_sys.text_detector.det_times.report(average=True)
rec_time_dict = text_sys.text_recognizer.rec_times.report(average=True)
det_model_name = args.det_model_dir
rec_model_name = args.rec_model_dir
# construct det log information
model_info = {
'model_name': args.det_model_dir.split('/')[-1],
'precision': args.precision
}
data_info = {
'batch_size': 1,
'shape': 'dynamic_shape',
'data_num': det_time_dict['img_num']
}
perf_info = {
'preprocess_time_s': det_time_dict['preprocess_time'],
'inference_time_s': det_time_dict['inference_time'],
'postprocess_time_s': det_time_dict['postprocess_time'],
'total_time_s': det_time_dict['total_time']
}
benchmark_log = benchmark_utils.PaddleInferBenchmark(
text_sys.text_detector.config, model_info, data_info, perf_info, mems,
args.save_log_path)
benchmark_log("Det")
# construct rec log information
model_info = {
'model_name': args.rec_model_dir.split('/')[-1],
'precision': args.precision
}
data_info = {
'batch_size': args.rec_batch_num,
'shape': 'dynamic_shape',
'data_num': rec_time_dict['img_num']
}
perf_info = {
'preprocess_time_s': rec_time_dict['preprocess_time'],
'inference_time_s': rec_time_dict['inference_time'],
'postprocess_time_s': rec_time_dict['postprocess_time'],
'total_time_s': rec_time_dict['total_time']
}
benchmark_log = benchmark_utils.PaddleInferBenchmark(
text_sys.text_recognizer.config, model_info, data_info, perf_info, mems,
args.save_log_path)
benchmark_log("Rec")
if __name__ == "__main__": if __name__ == "__main__":
......
...@@ -125,76 +125,6 @@ def parse_args(): ...@@ -125,76 +125,6 @@ def parse_args():
return parser.parse_args() return parser.parse_args()
class Times(object):
def __init__(self):
self.time = 0.
self.st = 0.
self.et = 0.
def start(self):
self.st = time.time()
def end(self, accumulative=True):
self.et = time.time()
if accumulative:
self.time += self.et - self.st
else:
self.time = self.et - self.st
def reset(self):
self.time = 0.
self.st = 0.
self.et = 0.
def value(self):
return round(self.time, 4)
class Timer(Times):
def __init__(self):
super(Timer, self).__init__()
self.total_time = Times()
self.preprocess_time = Times()
self.inference_time = Times()
self.postprocess_time = Times()
self.img_num = 0
def info(self, average=False):
logger.info("----------------------- Perf info -----------------------")
logger.info("total_time: {}, img_num: {}".format(self.total_time.value(
), self.img_num))
preprocess_time = round(self.preprocess_time.value() / self.img_num,
4) if average else self.preprocess_time.value()
postprocess_time = round(
self.postprocess_time.value() / self.img_num,
4) if average else self.postprocess_time.value()
inference_time = round(self.inference_time.value() / self.img_num,
4) if average else self.inference_time.value()
average_latency = self.total_time.value() / self.img_num
logger.info("average_latency(ms): {:.2f}, QPS: {:2f}".format(
average_latency * 1000, 1 / average_latency))
logger.info(
"preprocess_latency(ms): {:.2f}, inference_latency(ms): {:.2f}, postprocess_latency(ms): {:.2f}".
format(preprocess_time * 1000, inference_time * 1000,
postprocess_time * 1000))
def report(self, average=False):
dic = {}
dic['preprocess_time'] = round(
self.preprocess_time.value() / self.img_num,
4) if average else self.preprocess_time.value()
dic['postprocess_time'] = round(
self.postprocess_time.value() / self.img_num,
4) if average else self.postprocess_time.value()
dic['inference_time'] = round(
self.inference_time.value() / self.img_num,
4) if average else self.inference_time.value()
dic['img_num'] = self.img_num
dic['total_time'] = round(self.total_time.value(), 4)
return dic
def create_predictor(args, mode, logger): def create_predictor(args, mode, logger):
if mode == "det": if mode == "det":
model_dir = args.det_model_dir model_dir = args.det_model_dir
...@@ -213,11 +143,10 @@ def create_predictor(args, mode, logger): ...@@ -213,11 +143,10 @@ def create_predictor(args, mode, logger):
model_file_path = model_dir + "/inference.pdmodel" model_file_path = model_dir + "/inference.pdmodel"
params_file_path = model_dir + "/inference.pdiparams" params_file_path = model_dir + "/inference.pdiparams"
if not os.path.exists(model_file_path): if not os.path.exists(model_file_path):
logger.info("not find model file path {}".format(model_file_path)) raise ValueError("not find model file path {}".format(model_file_path))
sys.exit(0)
if not os.path.exists(params_file_path): if not os.path.exists(params_file_path):
logger.info("not find params file path {}".format(params_file_path)) raise ValueError("not find params file path {}".format(
sys.exit(0) params_file_path))
config = inference.Config(model_file_path, params_file_path) config = inference.Config(model_file_path, params_file_path)
...@@ -577,65 +506,5 @@ def draw_boxes(image, boxes, scores=None, drop_score=0.5): ...@@ -577,65 +506,5 @@ def draw_boxes(image, boxes, scores=None, drop_score=0.5):
return image return image
def get_current_memory_mb(gpu_id=None):
"""
It is used to Obtain the memory usage of the CPU and GPU during the running of the program.
And this function Current program is time-consuming.
"""
import pynvml
import psutil
import GPUtil
pid = os.getpid()
p = psutil.Process(pid)
info = p.memory_full_info()
cpu_mem = info.uss / 1024. / 1024.
gpu_mem = 0
gpu_percent = 0
if gpu_id is not None:
GPUs = GPUtil.getGPUs()
gpu_load = GPUs[gpu_id].load
gpu_percent = gpu_load
pynvml.nvmlInit()
handle = pynvml.nvmlDeviceGetHandleByIndex(0)
meminfo = pynvml.nvmlDeviceGetMemoryInfo(handle)
gpu_mem = meminfo.used / 1024. / 1024.
return round(cpu_mem, 4), round(gpu_mem, 4), round(gpu_percent, 4)
def get_rotate_crop_image(img, points):
'''
img_height, img_width = img.shape[0:2]
left = int(np.min(points[:, 0]))
right = int(np.max(points[:, 0]))
top = int(np.min(points[:, 1]))
bottom = int(np.max(points[:, 1]))
img_crop = img[top:bottom, left:right, :].copy()
points[:, 0] = points[:, 0] - left
points[:, 1] = points[:, 1] - top
'''
assert len(points) == 4, "shape of points must be 4*2"
img_crop_width = int(
max(
np.linalg.norm(points[0] - points[1]),
np.linalg.norm(points[2] - points[3])))
img_crop_height = int(
max(
np.linalg.norm(points[0] - points[3]),
np.linalg.norm(points[1] - points[2])))
pts_std = np.float32([[0, 0], [img_crop_width, 0],
[img_crop_width, img_crop_height],
[0, img_crop_height]])
M = cv2.getPerspectiveTransform(points, pts_std)
dst_img = cv2.warpPerspective(
img,
M, (img_crop_width, img_crop_height),
borderMode=cv2.BORDER_REPLICATE,
flags=cv2.INTER_CUBIC)
dst_img_height, dst_img_width = dst_img.shape[0:2]
if dst_img_height * 1.0 / dst_img_width >= 1.5:
dst_img = np.rot90(dst_img)
return dst_img
if __name__ == '__main__': if __name__ == '__main__':
pass pass
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册