提交 f05f5b3d 编写于 作者: 文幕地方's avatar 文幕地方

add speed up in doc

上级 bb66f0cb
...@@ -31,7 +31,7 @@ ...@@ -31,7 +31,7 @@
3. 图像质量差: 运动模糊,由于强光,反射或阴影造成的光照和对比度较差, 车牌(部分)遮挡; 3. 图像质量差: 运动模糊,由于强光,反射或阴影造成的光照和对比度较差, 车牌(部分)遮挡;
4. 在车辆管理等场景场景对于模型速度有着一定限制。 4. 在车辆管理等场景场景对于模型速度有着一定限制。
针对以上问题, 本例选用 [PP-OCRv3](../doc/doc_ch/PP-OCRv3_introduction.md) 这一开源超轻量OCR系统进行车牌识别系统的开发。基于PP-OCRv3模型,在CCPD数据集达到99%的检测和94%的识别精度,模型大小12.8M(2.5M+10.3M)。基于量化对模型体积进行进一步压缩到5.8M(1M+4.8M), 同时推理速度提升x%。 针对以上问题, 本例选用 [PP-OCRv3](../doc/doc_ch/PP-OCRv3_introduction.md) 这一开源超轻量OCR系统进行车牌识别系统的开发。基于PP-OCRv3模型,在CCPD数据集达到99%的检测和94%的识别精度,模型大小12.8M(2.5M+10.3M)。基于量化对模型体积进行进一步压缩到5.8M(1M+4.8M), 同时推理速度提升25%。
aistudio项目链接: [基于PaddleOCR的轻量级车牌识别范例](https://aistudio.baidu.com/aistudio/projectdetail/3919091?contributionType=1) aistudio项目链接: [基于PaddleOCR的轻量级车牌识别范例](https://aistudio.baidu.com/aistudio/projectdetail/3919091?contributionType=1)
...@@ -355,12 +355,12 @@ python3.7 deploy/slim/quantization/quant.py -c configs/det/ch_PP-OCRv3/ch_PP-OCR ...@@ -355,12 +355,12 @@ python3.7 deploy/slim/quantization/quant.py -c configs/det/ch_PP-OCRv3/ch_PP-OCR
量化后指标对比如下 量化后指标对比如下
|方案|hmeans| 模型大小 |预测速度(lite)| |方案|hmeans| 模型大小 | 预测速度(lite) |
|---|---|------|---| |---|---|------|------------|
|PP-OCRv3中英文超轻量检测预训练模型 fine-tune|99%| 2.5M || |PP-OCRv3中英文超轻量检测预训练模型 fine-tune|99%| 2.5M | 223ms |
|PP-OCRv3中英文超轻量检测预训练模型 fine-tune+量化|98.91%| 1M || |PP-OCRv3中英文超轻量检测预训练模型 fine-tune+量化|98.91%| 1M | 189ms |
可以看到量化后能显著降低模型体积并且精度几乎无损 可以看到通过量化训练在精度几乎无损的情况下,降低模型体积60%并且推理速度提升15%
#### 4.1.4 模型导出 #### 4.1.4 模型导出
...@@ -569,12 +569,12 @@ python3.7 deploy/slim/quantization/quant.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_ ...@@ -569,12 +569,12 @@ python3.7 deploy/slim/quantization/quant.py -c configs/rec/PP-OCRv3/ch_PP-OCRv3_
量化后指标对比如下 量化后指标对比如下
|方案| acc | 模型大小 |预测速度(lite)| |方案| acc | 模型大小 | 预测速度(lite) |
|---|--------|-------|---| |---|--------|-------|------------|
|PP-OCRv3中英文超轻量识别预训练模型 fine-tune| 94.54% | 10.3M | |PP-OCRv3中英文超轻量识别预训练模型 fine-tune| 94.54% | 10.3M | 4.2ms |
|PP-OCRv3中英文超轻量识别预训练模型 fine-tune + 量化| 93.4% | 4.8M | |PP-OCRv3中英文超轻量识别预训练模型 fine-tune + 量化| 93.4% | 4.8M | 1.8ms |
可以看到量化后能显著降低模型体积,但是由于识别数据过少,量化带来了1%的精度下降。 可以看到量化后能降低模型体积53%并且推理速度提升57%,但是由于识别数据过少,量化带来了1%的精度下降。
#### 4.2.5 模型导出 #### 4.2.5 模型导出
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册