提交 ec0de454 编写于 作者: qq_25193841's avatar qq_25193841

Merge remote-tracking branch 'upstream/dygraph' into dy1

......@@ -122,8 +122,7 @@ For a new language request, please refer to [Guideline for new language_requests
<img src="./doc/ppocr_framework.png" width="800">
</div>
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection, detection frame correction and CRNN text recognition. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner and PACT quantization is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).
PP-OCR is a practical ultra-lightweight OCR system. It is mainly composed of three parts: DB text detection[2], detection frame correction and CRNN text recognition[7]. The system adopts 19 effective strategies from 8 aspects including backbone network selection and adjustment, prediction head design, data augmentation, learning rate transformation strategy, regularization parameter selection, pre-training model use, and automatic model tailoring and quantization to optimize and slim down the models of each module. The final results are an ultra-lightweight Chinese and English OCR model with an overall size of 3.5M and a 2.8M English digital OCR model. For more details, please refer to the PP-OCR technical article (https://arxiv.org/abs/2009.09941). Besides, The implementation of the FPGM Pruner [8] and PACT quantization [9] is based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim).
## Visualization [more](./doc/doc_en/visualization_en.md)
......
......@@ -8,8 +8,8 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- 静态图版本:develop分支
**近期更新**
- 2021.1.4 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数142个,每周一都会更新,欢迎大家持续关注。
- 2020.12.15 更新数据合成工具[Style-Text](./StyleText/README_ch.md),可以批量合成大量与目标场景类似的图像,在多个场景验证,效果明显提升。
- 2020.12.14 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数127个,每周一都会更新,欢迎大家持续关注。
- 2020.11.25 更新半自动标注工具[PPOCRLabel](./PPOCRLabel/README_ch.md),辅助开发者高效完成标注任务,输出格式与PP-OCR训练任务完美衔接。
- 2020.9.22 更新PP-OCR技术文章,https://arxiv.org/abs/2009.09941
- [More](./doc/doc_ch/update.md)
......@@ -101,8 +101,8 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- [效果展示](#效果展示)
- FAQ
- [【精选】OCR精选10个问题](./doc/doc_ch/FAQ.md)
- [【理论篇】OCR通用30个问题](./doc/doc_ch/FAQ.md)
- [【实战篇】PaddleOCR实战84个问题](./doc/doc_ch/FAQ.md)
- [【理论篇】OCR通用31个问题](./doc/doc_ch/FAQ.md)
- [【实战篇】PaddleOCR实战101个问题](./doc/doc_ch/FAQ.md)
- [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书)
......@@ -115,7 +115,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式
<img src="./doc/ppocr_framework.png" width="800">
</div>
PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框矫正和CRNN文本识别三部分组成。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身,最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941 。其中FPGM裁剪器和PACT量化的实现可以参考[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)
PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测[2]、检测框矫正和CRNN文本识别三部分组成[7]。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身,最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941 。其中FPGM裁剪器[8]和PACT量化[9]的实现可以参考[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)
<a name="效果展示"></a>
## 效果展示 [more](./doc/doc_ch/visualization.md)
......
......@@ -22,7 +22,7 @@ English | [简体中文](README_ch.md)
</div>
The Style-Text data synthesis tool is a tool based on Baidu's self-developed text editing algorithm "Editing Text in the Wild" [https://arxiv.org/abs/1908.03047](https://arxiv.org/abs/1908.03047).
The Style-Text data synthesis tool is a tool based on Baidu and HUST cooperation research work, "Editing Text in the Wild" [https://arxiv.org/abs/1908.03047](https://arxiv.org/abs/1908.03047).
Different from the commonly used GAN-based data synthesis tools, the main framework of Style-Text includes:
* (1) Text foreground style transfer module.
......@@ -69,12 +69,14 @@ fusion_generator:
1. You can run `tools/synth_image` and generate the demo image, which is saved in the current folder.
```python
python3 -m tools.synth_image -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
python3 tools/synth_image.py -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
```
* Note 1: The language options is correspond to the corpus. Currently, the tool only supports English, Simplified Chinese and Korean.
* Note 2: Synth-Text is mainly used to generate images for OCR recognition models.
* Note 2: Synth-Text is mainly used to generate images for OCR recognition models.
So the height of style images should be around 32 pixels. Images in other sizes may behave poorly.
* Note 3: You can modify `use_gpu` in `configs/config.yml` to determine whether to use GPU for prediction.
For example, enter the following image and corpus `PaddleOCR`.
......@@ -122,7 +124,7 @@ In actual application scenarios, it is often necessary to synthesize pictures in
* `corpus_file`: Filepath of the corpus. Corpus file should be a text file which will be split by line-endings('\n'). Corpus generator samples one line each time.
Example of corpus file:
Example of corpus file:
```
PaddleOCR
飞桨文字识别
......@@ -139,9 +141,10 @@ We provide a general dataset containing Chinese, English and Korean (50,000 imag
2. You can run the following command to start synthesis task:
``` bash
python -m tools.synth_dataset.py -c configs/dataset_config.yml
python3 tools/synth_dataset.py -c configs/dataset_config.yml
```
We also provide example corpus and images in `examples` folder.
We also provide example corpus and images in `examples` folder.
<div align="center">
<img src="examples/style_images/1.jpg" width="300">
<img src="examples/style_images/2.jpg" width="300">
......
......@@ -21,7 +21,7 @@
</div>
Style-Text数据合成工具是基于百度自研的文本编辑算法《Editing Text in the Wild》https://arxiv.org/abs/1908.03047
Style-Text数据合成工具是基于百度和华科合作研发的文本编辑算法《Editing Text in the Wild》https://arxiv.org/abs/1908.03047
不同于常用的基于GAN的数据合成工具,Style-Text主要框架包括:1.文本前景风格迁移模块 2.背景抽取模块 3.融合模块。经过这样三步,就可以迅速实现图像文本风格迁移。下图是一些该数据合成工具效果图。
......@@ -61,11 +61,12 @@ fusion_generator:
输入一张风格图和一段文字语料,运行tools/synth_image,合成单张图片,结果图像保存在当前目录下:
```python
python3 -m tools.synth_image -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
python3 tools/synth_image.py -c configs/config.yml --style_image examples/style_images/2.jpg --text_corpus PaddleOCR --language en
```
* 注1:语言选项和语料相对应,目前该工具只支持英文、简体中文和韩语。
* 注2:Style-Text生成的数据主要应用于OCR识别场景。基于当前PaddleOCR识别模型的设计,我们主要支持高度在32左右的风格图像。
如果输入图像尺寸相差过多,效果可能不佳。
* 注3:可以通过修改配置文件中的`use_gpu`(true或者false)参数来决定是否使用GPU进行预测。
例如,输入如下图片和语料"PaddleOCR":
......@@ -127,7 +128,7 @@ python3 -m tools.synth_image -c configs/config.yml --style_image examples/style_
2. 运行`tools/synth_dataset`合成数据:
``` bash
python -m tools.synth_dataset -c configs/dataset_config.yml
python3 tools/synth_dataset.py -c configs/dataset_config.yml
```
我们在examples目录下提供了样例图片和语料。
<div align="center">
......
......@@ -28,6 +28,7 @@ class StyleTextRecPredictor(object):
], "Generator {} not supported.".format(algorithm)
use_gpu = config["Global"]['use_gpu']
check_gpu(use_gpu)
paddle.set_device('gpu' if use_gpu else 'cpu')
self.logger = get_logger()
self.generator = getattr(style_text_rec, algorithm)(config)
self.height = config["Global"]["image_height"]
......
......@@ -11,6 +11,14 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import sys
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from engine.synthesisers import DatasetSynthesiser
......
......@@ -16,13 +16,13 @@ import cv2
import sys
import glob
from utils.config import ArgsParser
from engine.synthesisers import ImageSynthesiser
__dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
from utils.config import ArgsParser
from engine.synthesisers import ImageSynthesiser
def synth_image():
args = ArgsParser().parse_args()
......
......@@ -67,7 +67,7 @@ Train:
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [0.5]
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
......
......@@ -66,7 +66,7 @@ Train:
data_dir: ./train_data/icdar2015/text_localization/
label_file_list:
- ./train_data/icdar2015/text_localization/train_icdar2015_label.txt
ratio_list: [0.5]
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
......
......@@ -62,7 +62,7 @@ Train:
name: SimpleDataSet
data_dir: ./train_data/
label_file_list: [./train_data/art_latin_icdar_14pt/train_no_tt_test/train_label_json.txt, ./train_data/total_text_icdar_14pt/train_label_json.txt]
data_ratio_list: [0.5, 0.5]
ratio_list: [0.5, 0.5]
transforms:
- DecodeImage: # load image
img_mode: BGR
......
......@@ -25,9 +25,9 @@
namespace PaddleOCR {
class Config {
class OCRConfig {
public:
explicit Config(const std::string &config_file) {
explicit OCRConfig(const std::string &config_file) {
config_map_ = LoadConfig(config_file);
this->use_gpu = bool(stoi(config_map_["use_gpu"]));
......@@ -41,8 +41,6 @@ public:
this->use_mkldnn = bool(stoi(config_map_["use_mkldnn"]));
this->use_zero_copy_run = bool(stoi(config_map_["use_zero_copy_run"]));
this->max_side_len = stoi(config_map_["max_side_len"]);
this->det_db_thresh = stod(config_map_["det_db_thresh"]);
......@@ -76,8 +74,6 @@ public:
bool use_mkldnn = false;
bool use_zero_copy_run = false;
int max_side_len = 960;
double det_db_thresh = 0.3;
......
......@@ -30,6 +30,8 @@
#include <include/preprocess_op.h>
#include <include/utility.h>
using namespace paddle_infer;
namespace PaddleOCR {
class Classifier {
......@@ -37,14 +39,12 @@ public:
explicit Classifier(const std::string &model_dir, const bool &use_gpu,
const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const bool &use_zero_copy_run,
const double &cls_thresh) {
const bool &use_mkldnn, const double &cls_thresh) {
this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem;
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
this->use_mkldnn_ = use_mkldnn;
this->use_zero_copy_run_ = use_zero_copy_run;
this->cls_thresh = cls_thresh;
......@@ -57,14 +57,13 @@ public:
cv::Mat Run(cv::Mat &img);
private:
std::shared_ptr<PaddlePredictor> predictor_;
std::shared_ptr<Predictor> predictor_;
bool use_gpu_ = false;
int gpu_id_ = 0;
int gpu_mem_ = 4000;
int cpu_math_library_num_threads_ = 4;
bool use_mkldnn_ = false;
bool use_zero_copy_run_ = false;
double cls_thresh = 0.5;
std::vector<float> mean_ = {0.5f, 0.5f, 0.5f};
......
......@@ -32,6 +32,8 @@
#include <include/postprocess_op.h>
#include <include/preprocess_op.h>
using namespace paddle_infer;
namespace PaddleOCR {
class DBDetector {
......@@ -39,8 +41,8 @@ public:
explicit DBDetector(const std::string &model_dir, const bool &use_gpu,
const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const bool &use_zero_copy_run,
const int &max_side_len, const double &det_db_thresh,
const bool &use_mkldnn, const int &max_side_len,
const double &det_db_thresh,
const double &det_db_box_thresh,
const double &det_db_unclip_ratio,
const bool &visualize) {
......@@ -49,7 +51,6 @@ public:
this->gpu_mem_ = gpu_mem;
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
this->use_mkldnn_ = use_mkldnn;
this->use_zero_copy_run_ = use_zero_copy_run;
this->max_side_len_ = max_side_len;
......@@ -69,14 +70,13 @@ public:
void Run(cv::Mat &img, std::vector<std::vector<std::vector<int>>> &boxes);
private:
std::shared_ptr<PaddlePredictor> predictor_;
std::shared_ptr<Predictor> predictor_;
bool use_gpu_ = false;
int gpu_id_ = 0;
int gpu_mem_ = 4000;
int cpu_math_library_num_threads_ = 4;
bool use_mkldnn_ = false;
bool use_zero_copy_run_ = false;
int max_side_len_ = 960;
......
......@@ -32,6 +32,8 @@
#include <include/preprocess_op.h>
#include <include/utility.h>
using namespace paddle_infer;
namespace PaddleOCR {
class CRNNRecognizer {
......@@ -39,14 +41,12 @@ public:
explicit CRNNRecognizer(const std::string &model_dir, const bool &use_gpu,
const int &gpu_id, const int &gpu_mem,
const int &cpu_math_library_num_threads,
const bool &use_mkldnn, const bool &use_zero_copy_run,
const string &label_path) {
const bool &use_mkldnn, const string &label_path) {
this->use_gpu_ = use_gpu;
this->gpu_id_ = gpu_id;
this->gpu_mem_ = gpu_mem;
this->cpu_math_library_num_threads_ = cpu_math_library_num_threads;
this->use_mkldnn_ = use_mkldnn;
this->use_zero_copy_run_ = use_zero_copy_run;
this->label_list_ = Utility::ReadDict(label_path);
this->label_list_.insert(this->label_list_.begin(),
......@@ -63,14 +63,13 @@ public:
Classifier *cls);
private:
std::shared_ptr<PaddlePredictor> predictor_;
std::shared_ptr<Predictor> predictor_;
bool use_gpu_ = false;
int gpu_id_ = 0;
int gpu_mem_ = 4000;
int cpu_math_library_num_threads_ = 4;
bool use_mkldnn_ = false;
bool use_zero_copy_run_ = false;
std::vector<std::string> label_list_;
......
......@@ -122,10 +122,10 @@ build/paddle_inference_install_dir/
* 下载之后使用下面的方法解压。
```
tar -xf fluid_inference.tgz
tar -xf paddle_inference.tgz
```
最终会在当前的文件夹中生成`fluid_inference/`的子文件夹。
最终会在当前的文件夹中生成`paddle_inference/`的子文件夹。
## 2 开始运行
......@@ -137,11 +137,11 @@ tar -xf fluid_inference.tgz
```
inference/
|-- det_db
| |--model
| |--params
| |--inference.pdparams
| |--inference.pdimodel
|-- rec_rcnn
| |--model
| |--params
| |--inference.pdparams
| |--inference.pdparams
```
......@@ -180,7 +180,7 @@ cmake .. \
make -j
```
`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`fluid_inference`文件夹)或者编译生成的Paddle预测库地址(`build/fluid_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中;为`/usr/local/cuda/lib64``CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`
`OPENCV_DIR`为opencv编译安装的地址;`LIB_DIR`为下载(`paddle_inference`文件夹)或者编译生成的Paddle预测库地址(`build/paddle_inference_install_dir`文件夹);`CUDA_LIB_DIR`为cuda库文件地址,在docker中;为`/usr/local/cuda/lib64``CUDNN_LIB_DIR`为cudnn库文件地址,在docker中为`/usr/lib/x86_64-linux-gnu/`
* 编译完成之后,会在`build`文件夹下生成一个名为`ocr_system`的可执行文件。
......@@ -202,7 +202,6 @@ gpu_id 0 # GPU id,使用GPU时有效
gpu_mem 4000 # 申请的GPU内存
cpu_math_library_num_threads 10 # CPU预测时的线程数,在机器核数充足的情况下,该值越大,预测速度越快
use_mkldnn 1 # 是否使用mkldnn库
use_zero_copy_run 1 # 是否使用use_zero_copy_run进行预测
# det config
max_side_len 960 # 输入图像长宽大于960时,等比例缩放图像,使得图像最长边为960
......
......@@ -107,10 +107,10 @@ make inference_lib_dist
For more compilation parameter options, please refer to the official website of the Paddle C++ inference library:[https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html](https://www.paddlepaddle.org.cn/documentation/docs/en/advanced_guide/inference_deployment/inference/build_and_install_lib_en.html).
* After the compilation process, you can see the following files in the folder of `build/fluid_inference_install_dir/`.
* After the compilation process, you can see the following files in the folder of `build/paddle_inference_install_dir/`.
```
build/fluid_inference_install_dir/
build/paddle_inference_install_dir/
|-- CMakeCache.txt
|-- paddle
|-- third_party
......@@ -130,10 +130,10 @@ Among them, `paddle` is the Paddle library required for C++ prediction later, an
* After downloading, use the following method to uncompress.
```
tar -xf fluid_inference.tgz
tar -xf paddle_inference.tgz
```
Finally you can see the following files in the folder of `fluid_inference/`.
Finally you can see the following files in the folder of `paddle_inference/`.
## 2. Compile and run the demo
......@@ -145,11 +145,11 @@ Finally you can see the following files in the folder of `fluid_inference/`.
```
inference/
|-- det_db
| |--model
| |--params
| |--inference.pdparams
| |--inference.pdimodel
|-- rec_rcnn
| |--model
| |--params
| |--inference.pdparams
| |--inference.pdparams
```
......@@ -188,7 +188,9 @@ cmake .. \
make -j
```
`OPENCV_DIR` is the opencv installation path; `LIB_DIR` is the download (`fluid_inference` folder) or the generated Paddle inference library path (`build/fluid_inference_install_dir` folder); `CUDA_LIB_DIR` is the cuda library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
`OPENCV_DIR` is the opencv installation path; `LIB_DIR` is the download (`paddle_inference` folder)
or the generated Paddle inference library path (`build/paddle_inference_install_dir` folder);
`CUDA_LIB_DIR` is the cuda library file path, in docker; it is `/usr/local/cuda/lib64`; `CUDNN_LIB_DIR` is the cudnn library file path, in docker it is `/usr/lib/x86_64-linux-gnu/`.
* After the compilation is completed, an executable file named `ocr_system` will be generated in the `build` folder.
......@@ -211,7 +213,6 @@ gpu_id 0 # GPU id when use_gpu is 1
gpu_mem 4000 # GPU memory requested
cpu_math_library_num_threads 10 # Number of threads when using CPU inference. When machine cores is enough, the large the value, the faster the inference speed
use_mkldnn 1 # Whether to use mkdlnn library
use_zero_copy_run 1 # Whether to use use_zero_copy_run for inference
max_side_len 960 # Limit the maximum image height and width to 960
det_db_thresh 0.3 # Used to filter the binarized image of DB prediction, setting 0.-0.3 has no obvious effect on the result
......@@ -244,4 +245,4 @@ The detection results will be shown on the screen, which is as follows.
### 2.3 Notes
* Paddle2.0.0-beta0 inference model library is recommanded for this tuturial.
* Paddle2.0.0-beta0 inference model library is recommended for this toturial.
......@@ -16,8 +16,8 @@
namespace PaddleOCR {
std::vector<std::string> Config::split(const std::string &str,
const std::string &delim) {
std::vector<std::string> OCRConfig::split(const std::string &str,
const std::string &delim) {
std::vector<std::string> res;
if ("" == str)
return res;
......@@ -38,7 +38,7 @@ std::vector<std::string> Config::split(const std::string &str,
}
std::map<std::string, std::string>
Config::LoadConfig(const std::string &config_path) {
OCRConfig::LoadConfig(const std::string &config_path) {
auto config = Utility::ReadDict(config_path);
std::map<std::string, std::string> dict;
......@@ -53,7 +53,7 @@ Config::LoadConfig(const std::string &config_path) {
return dict;
}
void Config::PrintConfigInfo() {
void OCRConfig::PrintConfigInfo() {
std::cout << "=======Paddle OCR inference config======" << std::endl;
for (auto iter = config_map_.begin(); iter != config_map_.end(); iter++) {
std::cout << iter->first << " : " << iter->second << std::endl;
......
......@@ -42,7 +42,7 @@ int main(int argc, char **argv) {
exit(1);
}
Config config(argv[1]);
OCRConfig config(argv[1]);
config.PrintConfigInfo();
......@@ -50,37 +50,22 @@ int main(int argc, char **argv) {
cv::Mat srcimg = cv::imread(img_path, cv::IMREAD_COLOR);
DBDetector det(
config.det_model_dir, config.use_gpu, config.gpu_id, config.gpu_mem,
config.cpu_math_library_num_threads, config.use_mkldnn,
config.use_zero_copy_run, config.max_side_len, config.det_db_thresh,
config.det_db_box_thresh, config.det_db_unclip_ratio, config.visualize);
DBDetector det(config.det_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.max_side_len, config.det_db_thresh,
config.det_db_box_thresh, config.det_db_unclip_ratio,
config.visualize);
Classifier *cls = nullptr;
if (config.use_angle_cls == true) {
cls = new Classifier(config.cls_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.use_zero_copy_run,
config.cls_thresh);
config.use_mkldnn, config.cls_thresh);
}
CRNNRecognizer rec(config.rec_model_dir, config.use_gpu, config.gpu_id,
config.gpu_mem, config.cpu_math_library_num_threads,
config.use_mkldnn, config.use_zero_copy_run,
config.char_list_file);
#ifdef USE_MKL
#pragma omp parallel
for (auto i = 0; i < 10; i++) {
LOG_IF(WARNING,
config.cpu_math_library_num_threads != omp_get_num_threads())
<< "WARNING! MKL is running on " << omp_get_num_threads()
<< " threads while cpu_math_library_num_threads is set to "
<< config.cpu_math_library_num_threads
<< ". Possible reason could be 1. You have set omp_set_num_threads() "
"somewhere; 2. MKL is not linked properly";
}
#endif
config.use_mkldnn, config.char_list_file);
auto start = std::chrono::system_clock::now();
std::vector<std::vector<std::vector<int>>> boxes;
......
......@@ -35,26 +35,16 @@ cv::Mat Classifier::Run(cv::Mat &img) {
this->permute_op_.Run(&resize_img, input.data());
// Inference.
if (this->use_zero_copy_run_) {
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputTensor(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->copy_from_cpu(input.data());
this->predictor_->ZeroCopyRun();
} else {
paddle::PaddleTensor input_t;
input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
input_t.data =
paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
input_t.dtype = PaddleDType::FLOAT32;
std::vector<paddle::PaddleTensor> outputs;
this->predictor_->Run({input_t}, &outputs, 1);
}
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> softmax_out;
std::vector<int64_t> label_out;
auto output_names = this->predictor_->GetOutputNames();
auto softmax_out_t = this->predictor_->GetOutputTensor(output_names[0]);
auto softmax_out_t = this->predictor_->GetOutputHandle(output_names[0]);
auto softmax_shape_out = softmax_out_t->shape();
int softmax_out_num =
......@@ -63,7 +53,7 @@ cv::Mat Classifier::Run(cv::Mat &img) {
softmax_out.resize(softmax_out_num);
softmax_out_t->copy_to_cpu(softmax_out.data());
softmax_out_t->CopyToCpu(softmax_out.data());
float score = 0;
int label = 0;
......@@ -95,7 +85,7 @@ void Classifier::LoadModel(const std::string &model_dir) {
}
// false for zero copy tensor
config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
config.SwitchUseFeedFetchOps(false);
// true for multiple input
config.SwitchSpecifyInputNames(true);
......@@ -104,6 +94,6 @@ void Classifier::LoadModel(const std::string &model_dir) {
config.EnableMemoryOptim();
config.DisableGlogInfo();
this->predictor_ = CreatePaddlePredictor(config);
this->predictor_ = CreatePredictor(config);
}
} // namespace PaddleOCR
......@@ -17,12 +17,17 @@
namespace PaddleOCR {
void DBDetector::LoadModel(const std::string &model_dir) {
AnalysisConfig config;
// AnalysisConfig config;
paddle_infer::Config config;
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
if (this->use_gpu_) {
config.EnableUseGpu(this->gpu_mem_, this->gpu_id_);
// config.EnableTensorRtEngine(
// 1 << 20, 1, 3,
// AnalysisConfig::Precision::kFloat32,
// false, false);
} else {
config.DisableGpu();
if (this->use_mkldnn_) {
......@@ -32,10 +37,8 @@ void DBDetector::LoadModel(const std::string &model_dir) {
}
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// false for zero copy tensor
// true for commom tensor
config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
// use zero_copy_run as default
config.SwitchUseFeedFetchOps(false);
// true for multiple input
config.SwitchSpecifyInputNames(true);
......@@ -44,7 +47,7 @@ void DBDetector::LoadModel(const std::string &model_dir) {
config.EnableMemoryOptim();
config.DisableGlogInfo();
this->predictor_ = CreatePaddlePredictor(config);
this->predictor_ = CreatePredictor(config);
}
void DBDetector::Run(cv::Mat &img,
......@@ -64,31 +67,21 @@ void DBDetector::Run(cv::Mat &img,
this->permute_op_.Run(&resize_img, input.data());
// Inference.
if (this->use_zero_copy_run_) {
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputTensor(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->copy_from_cpu(input.data());
this->predictor_->ZeroCopyRun();
} else {
paddle::PaddleTensor input_t;
input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
input_t.data =
paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
input_t.dtype = PaddleDType::FLOAT32;
std::vector<paddle::PaddleTensor> outputs;
this->predictor_->Run({input_t}, &outputs, 1);
}
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> out_data;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
std::vector<int> output_shape = output_t->shape();
int out_num = std::accumulate(output_shape.begin(), output_shape.end(), 1,
std::multiplies<int>());
out_data.resize(out_num);
output_t->copy_to_cpu(out_data.data());
output_t->CopyToCpu(out_data.data());
int n2 = output_shape[2];
int n3 = output_shape[3];
......
......@@ -43,32 +43,22 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
this->permute_op_.Run(&resize_img, input.data());
// Inference.
if (this->use_zero_copy_run_) {
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputTensor(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->copy_from_cpu(input.data());
this->predictor_->ZeroCopyRun();
} else {
paddle::PaddleTensor input_t;
input_t.shape = {1, 3, resize_img.rows, resize_img.cols};
input_t.data =
paddle::PaddleBuf(input.data(), input.size() * sizeof(float));
input_t.dtype = PaddleDType::FLOAT32;
std::vector<paddle::PaddleTensor> outputs;
this->predictor_->Run({input_t}, &outputs, 1);
}
auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
input_t->CopyFromCpu(input.data());
this->predictor_->Run();
std::vector<float> predict_batch;
auto output_names = this->predictor_->GetOutputNames();
auto output_t = this->predictor_->GetOutputTensor(output_names[0]);
auto output_t = this->predictor_->GetOutputHandle(output_names[0]);
auto predict_shape = output_t->shape();
int out_num = std::accumulate(predict_shape.begin(), predict_shape.end(), 1,
std::multiplies<int>());
predict_batch.resize(out_num);
output_t->copy_to_cpu(predict_batch.data());
output_t->CopyToCpu(predict_batch.data());
// ctc decode
std::vector<std::string> str_res;
......@@ -102,7 +92,8 @@ void CRNNRecognizer::Run(std::vector<std::vector<std::vector<int>>> boxes,
}
void CRNNRecognizer::LoadModel(const std::string &model_dir) {
AnalysisConfig config;
// AnalysisConfig config;
paddle_infer::Config config;
config.SetModel(model_dir + "/inference.pdmodel",
model_dir + "/inference.pdiparams");
......@@ -118,9 +109,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
config.SetCpuMathLibraryNumThreads(this->cpu_math_library_num_threads_);
}
// false for zero copy tensor
// true for commom tensor
config.SwitchUseFeedFetchOps(!this->use_zero_copy_run_);
config.SwitchUseFeedFetchOps(false);
// true for multiple input
config.SwitchSpecifyInputNames(true);
......@@ -129,7 +118,7 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
config.EnableMemoryOptim();
config.DisableGlogInfo();
this->predictor_ = CreatePaddlePredictor(config);
this->predictor_ = CreatePredictor(config);
}
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
......
......@@ -81,14 +81,14 @@ void ResizeImgType0::Run(const cv::Mat &img, cv::Mat &resize_img,
else if (resize_h / 32 < 1 + 1e-5)
resize_h = 32;
else
resize_h = (resize_h / 32 - 1) * 32;
resize_h = (resize_h / 32) * 32;
if (resize_w % 32 == 0)
resize_w = resize_w;
else if (resize_w / 32 < 1 + 1e-5)
resize_w = 32;
else
resize_w = (resize_w / 32 - 1) * 32;
resize_w = (resize_w / 32) * 32;
cv::resize(img, resize_img, cv::Size(resize_w, resize_h));
......
# model load config
use_gpu 0
use_gpu 0
gpu_id 0
gpu_mem 4000
cpu_math_library_num_threads 10
use_mkldnn 0
use_zero_copy_run 1
# det config
max_side_len 960
det_db_thresh 0.3
det_db_box_thresh 0.5
det_db_unclip_ratio 2.0
det_model_dir ./inference/ch__ppocr_mobile_v2.0_det_infer/
det_model_dir ./inference/ch_ppocr_mobile_v2.0_det_infer/
# cls config
use_angle_cls 0
......
......@@ -18,7 +18,7 @@ def read_params():
cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
cfg.use_zero_copy_run = False
cfg.use_pdserving = False
cfg.use_tensorrt = False
return cfg
......@@ -27,7 +27,7 @@ def read_params():
# cfg.det_east_cover_thresh = 0.1
# cfg.det_east_nms_thresh = 0.2
cfg.use_zero_copy_run = False
cfg.use_pdserving = False
cfg.use_tensorrt = False
return cfg
......@@ -13,7 +13,7 @@ def read_params():
#params for text recognizer
cfg.rec_algorithm = "CRNN"
cfg.rec_model_dir = "./inference/ch_ppocr_mobile_v1.1_rec_infer/"
cfg.rec_model_dir = "./inference/ch_ppocr_mobile_v2.0_rec_infer/"
cfg.rec_image_shape = "3, 32, 320"
cfg.rec_char_type = 'ch'
......@@ -23,7 +23,7 @@ def read_params():
cfg.rec_char_dict_path = "./ppocr/utils/ppocr_keys_v1.txt"
cfg.use_space_char = True
cfg.use_zero_copy_run = False
cfg.use_pdserving = False
cfg.use_tensorrt = False
return cfg
......@@ -47,8 +47,8 @@ def read_params():
cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
cfg.use_zero_copy_run = False
cfg.use_pdserving = False
cfg.use_tensorrt = False
cfg.drop_score = 0.5
return cfg
......@@ -9,42 +9,50 @@
## PaddleOCR常见问题汇总(持续更新)
* [近期更新(2020.12.14)](#近期更新)
* [近期更新(2021.1.4)](#近期更新)
* [【精选】OCR精选10个问题](#OCR精选10个问题)
* [【理论篇】OCR通用30个问题](#OCR通用问题)
* [【理论篇】OCR通用31个问题](#OCR通用问题)
* [基础知识7题](#基础知识)
* [数据集7题](#数据集2)
* [模型训练调优7题](#模型训练调优2)
* [预测部署9题](#预测部署2)
* [【实战篇】PaddleOCR实战87个问题](#PaddleOCR实战问题)
* [使用咨询21题](#使用咨询)
* [模型训练调优17题](#模型训练调优2)
* [【实战篇】PaddleOCR实战101个问题](#PaddleOCR实战问题)
* [使用咨询31题](#使用咨询)
* [数据集17题](#数据集3)
* [模型训练调优25](#模型训练调优3)
* [预测部署24](#预测部署3)
* [模型训练调优26](#模型训练调优3)
* [预测部署27](#预测部署3)
<a name="近期更新"></a>
## 近期更新(2020.12.14)
## 近期更新(2021.1.4)
#### Q3.1.21:PaddleOCR支持动态图吗
#### Q3.1.29: PPOCRLabel创建矩形框时只能拖出正方形,如何进行矩形标注
**A**动态图版本正在紧锣密鼓开发中,将于2020年12月16日发布,敬请关注。
**A** 取消勾选:“编辑”-“正方形标注”
#### Q3.3.23:检测模型训练或预测时出现elementwise_add报错
#### Q3.1.30: Style-Text 如何不文字风格迁移,就像普通文本生成程序一样默认字体直接输出到分割的背景图?
**A**:设置的输入尺寸必须是32的倍数,否则在网络多次下采样和上采样后,feature map会产生1个像素的diff,从而导致elementwise_add时报shape不匹配的错误。
**A**: 使用image_synth模式会输出fake_bg.jpg,即为背景图。如果想要批量提取背景,可以稍微修改一下代码,将fake_bg保存下来即可。要修改的位置:
https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/StyleText/engine/synthesisers.py#L68
#### Q3.3.24: DB检测训练输入尺寸640,可以改大一些吗
#### Q3.1.31: 怎么输出网络结构以及每层的参数信息
**A**: 不建议改大。检测模型训练输入尺寸是预处理中random crop后的尺寸,并非直接将原图进行resize,多数场景下这个尺寸并不小了,改大后可能反而并不合适,而且训练会变慢。另外,代码里可能有的地方参数按照预设输入尺寸适配的,改大后可能有隐藏风险
**A**: 可以使用 `paddle.summary`, 具体参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/api/paddle/hapi/model_summary/summary_cn.html#summary
#### Q3.3.25: 识别模型训练时,loss能正常下降,但acc一直为0
#### Q3.4.26: 目前paddle hub serving 只支持 imgpath,如果我想用imgurl 去哪里改呢?
**A**: 识别模型训练初期acc为0是正常的,多训一段时间指标就上来了。
**A**: 图片是在这里读取的:https://github.com/PaddlePaddle/PaddleOCR/blob/67ef25d593c4eabfaaceb22daade4577f53bed81/deploy/hubserving/ocr_system/module.py#L55,
可以参考下面的写法,将url path转化为np array(https://cloud.tencent.com/developer/article/1467840)
```
response = request.urlopen('http://i1.whymtj.com/uploads/tu/201902/9999/52491ae4ba.jpg')
img_array = np.array(bytearray(response.read()), dtype=np.uint8)
img = cv.imdecode(img_array, -1)
```
#### Q3.4.24:DB模型能正确推理预测,但换成EAST或SAST模型时报错或结果不正确
#### Q3.4.27: C++ 端侧部署可以只对OCR的检测部署吗?
**A**: 可以的,识别和检测模块是解耦的。如果想对检测部署,需要自己修改一下main函数,
只保留检测相关就可以:https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/deploy/cpp_infer/src/main.cpp#L72
**A**:使用EAST或SAST模型进行推理预测时,需要在命令中指定参数--det_algorithm="EAST" 或 --det_algorithm="SAST",使用DB时不用指定是因为该参数默认值是"DB":https://github.com/PaddlePaddle/PaddleOCR/blob/e7a708e9fdaf413ed7a14da8e4a7b4ac0b211e42/tools/infer/utility.py#L43
<a name="OCR精选10个问题"></a>
## 【精选】OCR精选10个问题
......@@ -238,18 +246,15 @@
(2)调大系统的[l2 dcay值](https://github.com/PaddlePaddle/PaddleOCR/blob/a501603d54ff5513fc4fc760319472e59da25424/configs/rec/ch_ppocr_v1.1/rec_chinese_lite_train_v1.1.yml#L47)
<a name="预测部署2"></a>
### 预测部署
#### Q2.4.1:请问对于图片中的密集文字,有什么好的处理办法吗?
#### Q2.3.8:请问对于图片中的密集文字,有什么好的处理办法吗?
**A**:可以先试用预训练模型测试一下,例如DB+CRNN,判断下密集文字图片中是检测还是识别的问题,然后针对性的改善。还有一种是如果图象中密集文字较小,可以尝试增大图像分辨率,对图像进行一定范围内的拉伸,将文字稀疏化,提高识别效果。
#### Q2.4.2:对于一些在识别时稍微模糊的文本,有没有一些图像增强的方式?
#### Q2.3.9:对于一些在识别时稍微模糊的文本,有没有一些图像增强的方式?
**A**:在人类肉眼可以识别的前提下,可以考虑图像处理中的均值滤波、中值滤波或者高斯滤波等模糊算子尝试。也可以尝试从数据扩增扰动来强化模型鲁棒性,另外新的思路有对抗性训练和超分SR思路,可以尝试借鉴。但目前业界尚无普遍认可的最优方案,建议优先在数据采集阶段增加一些限制提升图片质量。
#### Q2.4.3:对于特定文字检测,例如身份证只检测姓名,检测指定区域文字更好,还是检测全部区域再筛选更好?
#### Q2.3.10:对于特定文字检测,例如身份证只检测姓名,检测指定区域文字更好,还是检测全部区域再筛选更好?
**A**:两个角度来说明一般检测全部区域再筛选更好。
......@@ -257,11 +262,11 @@
(2)产品的需求可能是变化的,不排除后续对于模型需求变化的可能性(比如又需要增加一个字段),相比于训练模型,后处理的逻辑会更容易调整。
#### Q2.4.4:对于小白如何快速入门中文OCR项目实践?
#### Q2.3.11:对于小白如何快速入门中文OCR项目实践?
**A**:建议可以先了解OCR方向的基础知识,大概了解基础的检测和识别模型算法。然后在Github上可以查看OCR方向相关的repo。目前来看,从内容的完备性来看,PaddleOCR的中英文双语教程文档是有明显优势的,在数据集、模型训练、预测部署文档详实,可以快速入手。而且还有微信用户群答疑,非常适合学习实践。项目地址:[PaddleOCR](https://github.com/PaddlePaddle/PaddleOCR)
#### Q2.4.5:如何识别带空格的英文行文本图像?
#### Q3.12:如何识别带空格的英文行文本图像?
**A**:空格识别可以考虑以下两种方案:
......@@ -269,22 +274,26 @@
(2)优化文本识别算法。在识别字典里面引入空格字符,然后在识别的训练数据中,如果用空行,进行标注。此外,合成数据时,通过拼接训练数据,生成含有空格的文本。
#### Q2.4.6:中英文一起识别时也可以加空格字符来训练吗
#### Q2.3.13:中英文一起识别时也可以加空格字符来训练吗
**A**:中文识别可以加空格当做分隔符训练,具体的效果如何没法给出直接评判,根据实际业务数据训练来判断。
#### Q2.4.7:低像素文字或者字号比较小的文字有什么超分辨率方法吗
#### Q2.3.14:低像素文字或者字号比较小的文字有什么超分辨率方法吗
**A**:超分辨率方法分为传统方法和基于深度学习的方法。基于深度学习的方法中,比较经典的有SRCNN,另外CVPR2020也有一篇超分辨率的工作可以参考文章:Unpaired Image Super-Resolution using Pseudo-Supervision,但是没有充分的实践验证过,需要看实际场景下的效果。
#### Q2.4.8:表格识别有什么好的模型 或者论文推荐么
#### Q2.3.15:表格识别有什么好的模型 或者论文推荐么
**A**:表格目前学术界比较成熟的解决方案不多 ,可以尝试下分割的论文方案。
#### Q2.4.9:弯曲文本有试过opencv的TPS进行弯曲校正吗?
#### Q2.3.16:弯曲文本有试过opencv的TPS进行弯曲校正吗?
**A**:opencv的tps需要标出上下边界对应的点,这个点很难通过传统方法或者深度学习方法获取。PaddleOCR里StarNet网络中的tps模块实现了自动学点,自动校正,可以直接尝试这个。
#### Q2.3.17: StyleText 合成数据效果不好?
**A**:StyleText模型生成的数据主要用于OCR识别模型的训练。PaddleOCR目前识别模型的输入为32 x N,因此当前版本模型主要适用高度为32的数据。
建议要合成的数据尺寸设置为32 x N。尺寸相差不多的数据也可以生成,尺寸很大或很小的数据效果确实不佳。
<a name="PaddleOCR实战问题"></a>
......@@ -392,6 +401,63 @@
**A**:动态图版本正在紧锣密鼓开发中,将于2020年12月16日发布,敬请关注。
#### Q3.1.22:ModuleNotFoundError: No module named 'paddle.nn',
**A**:paddle.nn是Paddle2.0版本特有的功能,请安装大于等于Paddle 2.0.0rc1的版本,安装方式为
```
python3 -m pip install paddlepaddle-gpu==2.0.0rc1 -i https://mirror.baidu.com/pypi/simple
```
#### Q3.1.23: ImportError: /usr/lib/x86_64_linux-gnu/libstdc++.so.6:version `CXXABI_1.3.11` not found (required by /usr/lib/python3.6/site-package/paddle/fluid/core+avx.so)
**A**:这个问题是glibc版本不足导致的,Paddle2.0rc1版本对gcc版本和glib版本有更高的要求,推荐gcc版本为8.2,glibc版本2.12以上。
如果您的环境不满足这个要求,或者使用的docker镜像为:
`hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev`
`hub.baidubce.com/paddlepaddle/paddle:latest-gpu-cuda9.0-cudnn7-dev`,安装Paddle2.0rc版本可能会出现上述错误,2.0版本推荐使用新的docker镜像 `paddlepaddle/paddle:latest-dev-cuda10.1-cudnn7-gcc82`
或者访问[dockerhub](https://hub.docker.com/r/paddlepaddle/paddle/tags/)获得与您机器适配的镜像。
#### Q3.1.24: PaddleOCR develop分支和dygraph分支的区别?
**A** 目前PaddleOCR有四个分支,分别是:
- develop:基于Paddle静态图开发的分支,推荐使用paddle1.8 或者2.0版本,该分支具备完善的模型训练、预测、推理部署、量化裁剪等功能,领先于release/1.1分支。
- release/1.1:PaddleOCR 发布的第一个稳定版本,基于静态图开发,具备完善的训练、预测、推理部署、量化裁剪等功能。
- dygraph:基于Paddle动态图开发的分支,目前仍在开发中,未来将作为主要开发分支,运行要求使用Paddle2.0rc1版本,目前仍在开发中。
- release/2.0-rc1-0:PaddleOCR发布的第二个稳定版本,基于动态图和paddle2.0版本开发,动态图开发的工程更易于调试,目前支,支持模型训练、预测,暂不支持移动端部署。
如果您已经上手过PaddleOCR,并且希望在各种环境上部署PaddleOCR,目前建议使用静态图分支,develop或者release/1.1分支。如果您是初学者,想快速训练,调试PaddleOCR中的算法,建议尝鲜PaddleOCR dygraph分支。
**注意**:develop和dygraph分支要求的Paddle版本、本地环境有差别,请注意不同分支环境安装部分的差异。
#### Q3.1.25: 使用dygraph分支,在docker中训练PaddleOCR的时候,数据路径没有任何问题,但是一直报错`reader rasied an exception`,这是为什么呢?
**A** 创建docker的时候,`/dev/shm`的默认大小为64M,如果使用多进程读取数据,共享内存可能不够,因此需要给`/dev/shm`分配更大的空间,在创建docker的时候,传入`--shm-size=8g`表示给`/dev/shm`分配8g的空间。
#### Q3.1.26: 在repo中没有找到Lite和PaddleServing相关的部署教程,这是在哪里呢?
**A** 目前PaddleOCR的默认分支为dygraph,关于Lite和PaddleLite的动态图部署还在适配中,如果希望在Lite端或者使用PaddleServing部署,推荐使用develop分支(静态图)的代码。
#### Q3.1.27: 如何可视化acc,loss曲线图,模型网络结构图等?
**A** 在配置文件里有`use_visualdl`的参数,设置为True即可,更多的使用命令可以参考:[VisualDL使用指南](https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/guides/03_VisualDL/visualdl.html)
#### Q3.1.28: 在使用StyleText数据合成工具的时候,报错`ModuleNotFoundError: No module named 'utils.config'`,这是为什么呢?
**A** 有2个解决方案
- 在StyleText路径下面设置PYTHONPATH:`export PYTHONPATH=./`
- 拉取最新的代码
#### Q3.1.29: PPOCRLabel创建矩形框时只能拖出正方形,如何进行矩形标注?
**A** 取消勾选:“编辑”-“正方形标注”
#### Q3.1.30: Style-Text 如何不文字风格迁移,就像普通文本生成程序一样默认字体直接输出到分割的背景图?
**A** 使用image_synth模式会输出fake_bg.jpg,即为背景图。如果想要批量提取背景,可以稍微修改一下代码,将fake_bg保存下来即可。要修改的位置:
https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/StyleText/engine/synthesisers.py#L68
#### Q3.1.31: 怎么输出网络结构以及每层的参数信息?
**A** 可以使用 `paddle.summary`, 具体参考:https://www.paddlepaddle.org.cn/documentation/docs/zh/2.0-rc1/api/paddle/hapi/model_summary/summary_cn.html#summary。
<a name="数据集3"></a>
### 数据集
......@@ -594,11 +660,11 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
#### Q3.3.20: 文字检测时怎么模糊的数据增强?
**A**: 模糊的数据增强需要修改代码进行添加,以DB为例,参考[Normalize](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/operators.py#L60) ,添加模糊的增强就行
**A**: 模糊的数据增强需要修改代码进行添加,以DB为例,参考[Normalize](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/operators.py#L60) ,添加模糊的增强就行
#### Q3.3.21: 文字检测时怎么更改图片旋转的角度,实现360度任意旋转?
**A**: 将[这里](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/iaa_augment.py#L64) 的(-10,10) 改为(-180,180)即可
**A**: 将[这里](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/ppocr/data/imaug/iaa_augment.py#L64) 的(-10,10) 改为(-180,180)即可
#### Q3.3.22: 训练数据的长宽比过大怎么修改shape
......@@ -617,6 +683,10 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
**A**: 识别模型训练初期acc为0是正常的,多训一段时间指标就上来了。
#### Q3.3.26: PaddleOCR在训练的时候一直使用cosine_decay的学习率下降策略,这是为什么呢?
**A**: cosine_decay表示在训练的过程中,学习率按照cosine的变化趋势逐渐下降至0,在迭代轮数更长的情况下,比常量的学习率变化策略会有更好的收敛效果,因此在实际训练的时候,均采用了cosine_decay,来获得精度更高的模型。
<a name="预测部署3"></a>
### 预测部署
......@@ -728,4 +798,25 @@ ps -axu | grep train.py | awk '{print $2}' | xargs kill -9
#### Q3.4.24:DB模型能正确推理预测,但换成EAST或SAST模型时报错或结果不正确
**A**:使用EAST或SAST模型进行推理预测时,需要在命令中指定参数--det_algorithm="EAST" 或 --det_algorithm="SAST",使用DB时不用指定是因为该参数默认值是"DB":https://github.com/PaddlePaddle/PaddleOCR/blob/e7a708e9fdaf413ed7a14da8e4a7b4ac0b211e42/tools/infer/utility.py#L43
\ No newline at end of file
**A**:使用EAST或SAST模型进行推理预测时,需要在命令中指定参数--det_algorithm="EAST" 或 --det_algorithm="SAST",使用DB时不用指定是因为该参数默认值是"DB":https://github.com/PaddlePaddle/PaddleOCR/blob/e7a708e9fdaf413ed7a14da8e4a7b4ac0b211e42/tools/infer/utility.py#L43
#### Q3.4.25 : PaddleOCR模型Python端预测和C++预测结果不一致?
正常来说,python端预测和C++预测文本是一致的,如果预测结果差异较大,
建议首先排查diff出现在检测模型还是识别模型,或者尝试换其他模型是否有类似的问题。
其次,检查python端和C++端数据处理部分是否存在差异,建议保存环境,更新PaddleOCR代码再试下。
如果更新代码或者更新代码都没能解决,建议在PaddleOCR微信群里或者issue中抛出您的问题。
### Q3.4.26: 目前paddle hub serving 只支持 imgpath,如果我想用imgurl 去哪里改呢?
**A**: 图片是在这里读取的:https://github.com/PaddlePaddle/PaddleOCR/blob/67ef25d593c4eabfaaceb22daade4577f53bed81/deploy/hubserving/ocr_system/module.py#L55,
可以参考下面的写法,将url path转化为np array(https://cloud.tencent.com/developer/article/1467840)
```
response = request.urlopen('http://i1.whymtj.com/uploads/tu/201902/9999/52491ae4ba.jpg')
img_array = np.array(bytearray(response.read()), dtype=np.uint8)
img = cv.imdecode(img_array, -1)
```
### Q3.4.27: C++ 端侧部署可以只对OCR的检测部署吗?
**A** 可以的,识别和检测模块是解耦的。如果想对检测部署,需要自己修改一下main函数,
只保留检测相关就可以:https://github.com/PaddlePaddle/PaddleOCR/blob/de3e2e7cd3b8b65ee02d7a41e570fa5b511a3c1d/deploy/cpp_infer/src/main.cpp#L72
......@@ -9,9 +9,9 @@
### 1.文本检测算法
PaddleOCR开源的文本检测算法列表:
- [x] DB([paper]( https://arxiv.org/abs/1911.08947) )(ppocr推荐)
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))
- [x] DB([paper]( https://arxiv.org/abs/1911.08947)) [2](ppocr推荐)
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[1]
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
在ICDAR2015文本检测公开数据集上,算法效果如下:
......@@ -38,13 +38,13 @@ PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训
### 2.文本识别算法
PaddleOCR基于动态图开源的文本识别算法列表:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717) )(ppocr推荐)
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)) coming soon
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1)) coming soon
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294)) coming soon
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐)
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] coming soon
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon
参考[DTRB](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
参考[DTRB][3](https://arxiv.org/abs/1904.01906)文字识别训练和评估流程,使用MJSynth和SynthText两个文字识别数据集训练,在IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE数据集上进行评估,算法效果如下:
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|-|-|-|-|-|
......
......@@ -117,7 +117,7 @@ python3 tools/eval.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/
```
# 预测分类结果
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
预测图片:
......
......@@ -120,16 +120,16 @@ python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{pat
测试单张图像的检测效果
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy"
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
测试DB模型时,调整后处理阈值,
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
```
测试文件夹下所有图像的检测效果
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.checkpoints="./output/det_db/best_accuracy"
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
......@@ -245,7 +245,10 @@ python3 tools/infer/predict_det.py --det_algorithm="SAST" --image_dir="./doc/img
超轻量中文识别模型推理,可以执行如下命令:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
# 下载超轻量中文识别模型:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
```
![](../imgs_words/ch/word_4.jpg)
......@@ -266,7 +269,6 @@ Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
```
python3 tools/export_model.py -c configs/rec/rec_r34_vd_none_bilstm_ctc.yml -o Global.pretrained_model=./rec_r34_vd_none_bilstm_ctc_v2.0_train/best_accuracy Global.load_static_weights=False Global.save_inference_dir=./inference/rec_crnn
```
CRNN 文本识别模型推理,可以执行如下命令:
......@@ -327,7 +329,10 @@ Predicts of ./doc/imgs_words/korean/1.jpg:('바탕으로', 0.9948904)
方向分类模型推理,可以执行如下命令:
```
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="./inference/cls/"
# 下载超轻量中文方向分类器模型:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
![](../imgs_words/ch/word_1.jpg)
......
......@@ -96,5 +96,5 @@ python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_mode
此外,文档教程中也提供了中文OCR模型的其他预测部署方式:
- [基于C++预测引擎推理](../../deploy/cpp_infer/readme.md)
- [服务部署](../../deploy/pdserving/readme.md)
- [端侧部署](../../deploy/lite/readme.md)
- [服务部署](../../deploy/hubserving)
- [端侧部署(目前只支持静态图)](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/lite)
......@@ -324,7 +324,6 @@ Eval:
评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
*注意* 评估时必须确保配置文件中 infer_img 字段为空
```
# GPU 评估, Global.checkpoints 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
......@@ -342,7 +341,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
```
# 预测英文结果
python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.png
```
预测图片:
......@@ -361,7 +360,7 @@ infer_img: doc/imgs_words/en/word_1.png
```
# 预测中文结果
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/ch/word_1.jpg
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
预测图片:
......
......@@ -11,11 +11,12 @@
}
2. DB:
@article{liao2019real,
title={Real-time Scene Text Detection with Differentiable Binarization},
@inproceedings{liao2020real,
title={Real-Time Scene Text Detection with Differentiable Binarization.},
author={Liao, Minghui and Wan, Zhaoyi and Yao, Cong and Chen, Kai and Bai, Xiang},
journal={arXiv preprint arXiv:1911.08947},
year={2019}
booktitle={AAAI},
pages={11474--11481},
year={2020}
}
3. DTRB:
......@@ -37,10 +38,11 @@
}
5. SRN:
@article{yu2020towards,
title={Towards Accurate Scene Text Recognition with Semantic Reasoning Networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Han, Junyu and Liu, Jingtuo and Ding, Errui},
journal={arXiv preprint arXiv:2003.12294},
@inproceedings{yu2020towards,
title={Towards accurate scene text recognition with semantic reasoning networks},
author={Yu, Deli and Li, Xuan and Zhang, Chengquan and Liu, Tao and Han, Junyu and Liu, Jingtuo and Ding, Errui},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={12113--12122},
year={2020}
}
......@@ -52,4 +54,62 @@
pages={9086--9095},
year={2019}
}
```
\ No newline at end of file
7. CRNN:
@article{shi2016end,
title={An end-to-end trainable neural network for image-based sequence recognition and its application to scene text recognition},
author={Shi, Baoguang and Bai, Xiang and Yao, Cong},
journal={IEEE transactions on pattern analysis and machine intelligence},
volume={39},
number={11},
pages={2298--2304},
year={2016},
publisher={IEEE}
}
8. FPGM:
@inproceedings{he2019filter,
title={Filter pruning via geometric median for deep convolutional neural networks acceleration},
author={He, Yang and Liu, Ping and Wang, Ziwei and Hu, Zhilan and Yang, Yi},
booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
pages={4340--4349},
year={2019}
}
9. PACT:
@article{choi2018pact,
title={Pact: Parameterized clipping activation for quantized neural networks},
author={Choi, Jungwook and Wang, Zhuo and Venkataramani, Swagath and Chuang, Pierce I-Jen and Srinivasan, Vijayalakshmi and Gopalakrishnan, Kailash},
journal={arXiv preprint arXiv:1805.06085},
year={2018}
}
10.Rosetta
@inproceedings{borisyuk2018rosetta,
title={Rosetta: Large scale system for text detection and recognition in images},
author={Borisyuk, Fedor and Gordo, Albert and Sivakumar, Viswanath},
booktitle={Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery \& Data Mining},
pages={71--79},
year={2018}
}
11.STAR-Net
@inproceedings{liu2016star,
title={STAR-Net: A SpaTial Attention Residue Network for Scene Text Recognition.},
author={Liu, Wei and Chen, Chaofeng and Wong, Kwan-Yee K and Su, Zhizhong and Han, Junyu},
booktitle={BMVC},
volume={2},
pages={7},
year={2016}
}
12.RARE
@inproceedings{shi2016robust,
title={Robust scene text recognition with automatic rectification},
author={Shi, Baoguang and Wang, Xinggang and Lyu, Pengyuan and Yao, Cong and Bai, Xiang},
booktitle={Proceedings of the IEEE conference on computer vision and pattern recognition},
pages={4168--4176},
year={2016}
}
```
......@@ -11,9 +11,9 @@ This tutorial lists the text detection algorithms and text recognition algorithm
### 1. Text Detection Algorithm
PaddleOCR open source text detection algorithms list:
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))
- [x] DB([paper](https://arxiv.org/abs/1911.08947))
- [x] SAST([paper](https://arxiv.org/abs/1908.05498) )(Baidu Self-Research)
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[2]
- [x] DB([paper](https://arxiv.org/abs/1911.08947))[1]
- [x] SAST([paper](https://arxiv.org/abs/1908.05498))[4]
On the ICDAR2015 dataset, the text detection result is as follows:
......@@ -39,11 +39,11 @@ For the training guide and use of PaddleOCR text detection algorithms, please re
### 2. Text Recognition Algorithm
PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html)) coming soon
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1)) coming soon
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294) )(Baidu Self-Research) coming soon
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
- [x] Rosetta([paper](https://arxiv.org/abs/1910.05085))[10]
- [ ] STAR-Net([paper](http://www.bmva.org/bmvc/2016/papers/paper043/index.html))[11] coming soon
- [ ] RARE([paper](https://arxiv.org/abs/1603.03915v1))[12] coming soon
- [ ] SRN([paper](https://arxiv.org/abs/2003.12294))[5] coming soon
Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation result of these above text recognition (using MJSynth and SynthText for training, evaluate on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE) is as follow:
......
......@@ -119,7 +119,7 @@ Use `Global.infer_img` to specify the path of the predicted picture or folder, a
```
# Predict English results
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words_en/word_10.png
python3 tools/infer_cls.py -c configs/cls/cls_mv3.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words_en/word_10.png
```
Input image:
......
......@@ -113,16 +113,16 @@ python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{pat
Test the detection result on a single image:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy"
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
When testing the DB model, adjust the post-processing threshold:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.checkpoints="./output/det_db/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/img_10.jpg" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
```
Test the detection result on all images in the folder:
```shell
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.checkpoints="./output/det_db/best_accuracy"
python3 tools/infer_det.py -c configs/det/det_mv3_db.yml -o Global.infer_img="./doc/imgs_en/" Global.pretrained_model="./output/det_db/best_accuracy" Global.load_static_weights=false
```
......@@ -255,15 +255,18 @@ The following will introduce the lightweight Chinese recognition model inference
For lightweight Chinese recognition model inference, you can execute the following commands:
```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words/ch/word_4.jpg" --rec_model_dir="./inference/rec_crnn/"
# download CRNN text recognition inference model
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar
tar xf ch_ppocr_mobile_v2.0_rec_infer.tar
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_10.png" --rec_model_dir="ch_ppocr_mobile_v2.0_rec_infer"
```
![](../imgs_words/ch/word_4.jpg)
![](../imgs_words_en/word_10.png)
After executing the command, the prediction results (recognized text and score) of the above image will be printed on the screen.
```bash
Predicts of ./doc/imgs_words/ch/word_4.jpg:('实力活力', 0.98458153)
Predicts of ./doc/imgs_words_en/word_10.png:('PAIN', 0.9897658)
```
<a name="CTC-BASED_RECOGNITION"></a>
......@@ -339,7 +342,12 @@ For angle classification model inference, you can execute the following commands
```
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="./inference/cls/"
```
```
# download text angle class inference model:
wget https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar
tar xf ch_ppocr_mobile_v2.0_cls_infer.tar
python3 tools/infer/predict_cls.py --image_dir="./doc/imgs_words_en/word_10.png" --cls_model_dir="ch_ppocr_mobile_v2.0_cls_infer"
```
![](../imgs_words_en/word_10.png)
After executing the command, the prediction results (classification angle and score) of the above image will be printed on the screen.
......
......@@ -99,5 +99,5 @@ For more text detection and recognition tandem reasoning, please refer to the do
In addition, the tutorial also provides other deployment methods for the Chinese OCR model:
- [Server-side C++ inference](../../deploy/cpp_infer/readme_en.md)
- [Service deployment](../../deploy/pdserving/readme_en.md)
- [End-to-end deployment](../../deploy/lite/readme_en.md)
- [Service deployment](../../deploy/hubserving)
- [End-to-end deployment](https://github.com/PaddlePaddle/PaddleOCR/tree/develop/deploy/lite)
......@@ -317,11 +317,11 @@ Eval:
<a name="EVALUATION"></a>
### EVALUATION
The evaluation data set can be modified via `configs/rec/rec_icdar15_reader.yml` setting of `label_file_path` in EvalReader.
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
```
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_reader.yml -o Global.checkpoints={path/to/weights}/best_accuracy
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
```
<a name="PREDICTION"></a>
......@@ -336,7 +336,7 @@ The default prediction picture is stored in `infer_img`, and the weight is speci
```
# Predict English results
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/en/word_1.jpg
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/en/word_1.jpg
```
Input image:
......@@ -354,7 +354,7 @@ The configuration file used for prediction must be consistent with the training.
```
# Predict Chinese results
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.checkpoints={path/to/weights}/best_accuracy TestReader.infer_img=doc/imgs_words/ch/word_1.jpg
python3 tools/infer_rec.py -c configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model={path/to/weights}/best_accuracy Global.load_static_weights=false Global.infer_img=doc/imgs_words/ch/word_1.jpg
```
Input image:
......
......@@ -262,8 +262,8 @@ class PaddleOCR(predict_system.TextSystem):
logger.error('rec_algorithm must in {}'.format(SUPPORT_REC_MODEL))
sys.exit(0)
postprocess_params.rec_char_dict_path = Path(
__file__).parent / postprocess_params.rec_char_dict_path
postprocess_params.rec_char_dict_path = str(
Path(__file__).parent / postprocess_params.rec_char_dict_path)
# init det_model and rec_model
super().__init__(postprocess_params)
......
......@@ -119,10 +119,10 @@ class DetResizeForTest(object):
if 'image_shape' in kwargs:
self.image_shape = kwargs['image_shape']
self.resize_type = 1
if 'limit_side_len' in kwargs:
elif 'limit_side_len' in kwargs:
self.limit_side_len = kwargs['limit_side_len']
self.limit_type = kwargs.get('limit_type', 'min')
if 'resize_long' in kwargs:
elif 'resize_long' in kwargs:
self.resize_type = 2
self.resize_long = kwargs.get('resize_long', 960)
else:
......
......@@ -45,7 +45,6 @@ class BalanceLoss(nn.Layer):
self.balance_loss = balance_loss
self.main_loss_type = main_loss_type
self.negative_ratio = negative_ratio
self.main_loss_type = main_loss_type
self.return_origin = return_origin
self.eps = eps
......
......@@ -19,7 +19,6 @@ from __future__ import print_function
import paddle
from paddle import nn
from .det_basic_loss import DiceLoss
import paddle.fluid as fluid
import numpy as np
......@@ -27,9 +26,7 @@ class SASTLoss(nn.Layer):
"""
"""
def __init__(self,
eps=1e-6,
**kwargs):
def __init__(self, eps=1e-6, **kwargs):
super(SASTLoss, self).__init__()
self.dice_loss = DiceLoss(eps=eps)
......@@ -39,7 +36,7 @@ class SASTLoss(nn.Layer):
tcl_mask: N x 128 x 1
tcl_label: N x X list or LoDTensor
"""
f_score = predicts['f_score']
f_border = predicts['f_border']
f_tvo = predicts['f_tvo']
......@@ -53,15 +50,17 @@ class SASTLoss(nn.Layer):
score_loss = 1.0 - 2 * intersection / (union + 1e-5)
#border loss
l_border_split, l_border_norm = paddle.split(l_border, num_or_sections=[4, 1], axis=1)
l_border_split, l_border_norm = paddle.split(
l_border, num_or_sections=[4, 1], axis=1)
f_border_split = f_border
border_ex_shape = l_border_norm.shape * np.array([1, 4, 1, 1])
l_border_norm_split = paddle.expand(x=l_border_norm, shape=border_ex_shape)
l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
l_border_norm_split = paddle.expand(
x=l_border_norm, shape=border_ex_shape)
l_border_score = paddle.expand(x=l_score, shape=border_ex_shape)
l_border_mask = paddle.expand(x=l_mask, shape=border_ex_shape)
border_diff = l_border_split - f_border_split
abs_border_diff = paddle.abs(border_diff)
abs_border_diff = paddle.abs(border_diff)
border_sign = abs_border_diff < 1.0
border_sign = paddle.cast(border_sign, dtype='float32')
border_sign.stop_gradient = True
......@@ -72,15 +71,16 @@ class SASTLoss(nn.Layer):
(paddle.sum(l_border_score * l_border_mask) + 1e-5)
#tvo_loss
l_tvo_split, l_tvo_norm = paddle.split(l_tvo, num_or_sections=[8, 1], axis=1)
l_tvo_split, l_tvo_norm = paddle.split(
l_tvo, num_or_sections=[8, 1], axis=1)
f_tvo_split = f_tvo
tvo_ex_shape = l_tvo_norm.shape * np.array([1, 8, 1, 1])
l_tvo_norm_split = paddle.expand(x=l_tvo_norm, shape=tvo_ex_shape)
l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
l_tvo_score = paddle.expand(x=l_score, shape=tvo_ex_shape)
l_tvo_mask = paddle.expand(x=l_mask, shape=tvo_ex_shape)
#
tvo_geo_diff = l_tvo_split - f_tvo_split
abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
abs_tvo_geo_diff = paddle.abs(tvo_geo_diff)
tvo_sign = abs_tvo_geo_diff < 1.0
tvo_sign = paddle.cast(tvo_sign, dtype='float32')
tvo_sign.stop_gradient = True
......@@ -91,15 +91,16 @@ class SASTLoss(nn.Layer):
(paddle.sum(l_tvo_score * l_tvo_mask) + 1e-5)
#tco_loss
l_tco_split, l_tco_norm = paddle.split(l_tco, num_or_sections=[2, 1], axis=1)
l_tco_split, l_tco_norm = paddle.split(
l_tco, num_or_sections=[2, 1], axis=1)
f_tco_split = f_tco
tco_ex_shape = l_tco_norm.shape * np.array([1, 2, 1, 1])
l_tco_norm_split = paddle.expand(x=l_tco_norm, shape=tco_ex_shape)
l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
l_tco_score = paddle.expand(x=l_score, shape=tco_ex_shape)
l_tco_mask = paddle.expand(x=l_mask, shape=tco_ex_shape)
tco_geo_diff = l_tco_split - f_tco_split
abs_tco_geo_diff = paddle.abs(tco_geo_diff)
abs_tco_geo_diff = paddle.abs(tco_geo_diff)
tco_sign = abs_tco_geo_diff < 1.0
tco_sign = paddle.cast(tco_sign, dtype='float32')
tco_sign.stop_gradient = True
......@@ -109,13 +110,12 @@ class SASTLoss(nn.Layer):
tco_loss = paddle.sum(tco_out_loss * l_tco_score * l_tco_mask) / \
(paddle.sum(l_tco_score * l_tco_mask) + 1e-5)
# total loss
tvo_lw, tco_lw = 1.5, 1.5
score_lw, border_lw = 1.0, 1.0
total_loss = score_loss * score_lw + border_loss * border_lw + \
tvo_loss * tvo_lw + tco_loss * tco_lw
losses = {'loss':total_loss, "score_loss":score_loss,\
"border_loss":border_loss, 'tvo_loss':tvo_loss, 'tco_loss':tco_loss}
return losses
\ No newline at end of file
return losses
......@@ -16,6 +16,7 @@ from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import paddle
from paddle import nn, ParamAttr
from paddle.nn import functional as F
......@@ -88,11 +89,14 @@ class LocalizationNetwork(nn.Layer):
in_channels = num_filters
self.block_list.append(pool)
name = "loc_fc1"
stdv = 1.0 / math.sqrt(num_filters_list[-1] * 1.0)
self.fc1 = nn.Linear(
in_channels,
fc_dim,
weight_attr=ParamAttr(
learning_rate=loc_lr, name=name + "_w"),
learning_rate=loc_lr,
name=name + "_w",
initializer=nn.initializer.Uniform(-stdv, stdv)),
bias_attr=ParamAttr(name=name + '.b_0'),
name=name)
......
......@@ -18,6 +18,7 @@ from __future__ import print_function
from __future__ import unicode_literals
from paddle.optimizer import lr
from .lr_scheduler import CyclicalCosineDecay
class Linear(object):
......@@ -46,7 +47,7 @@ class Linear(object):
self.end_lr = end_lr
self.power = power
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.PolynomialDecay(
......@@ -87,7 +88,7 @@ class Cosine(object):
self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.CosineAnnealingDecay(
......@@ -129,7 +130,7 @@ class Step(object):
self.learning_rate = learning_rate
self.gamma = gamma
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.StepDecay(
......@@ -168,7 +169,7 @@ class Piecewise(object):
self.boundaries = [step_each_epoch * e for e in decay_epochs]
self.values = values
self.last_epoch = last_epoch
self.warmup_epoch = warmup_epoch * step_each_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
def __call__(self):
learning_rate = lr.PiecewiseDecay(
......@@ -183,3 +184,45 @@ class Piecewise(object):
end_lr=self.values[0],
last_epoch=self.last_epoch)
return learning_rate
class CyclicalCosine(object):
"""
Cyclical cosine learning rate decay
Args:
learning_rate(float): initial learning rate
step_each_epoch(int): steps each epoch
epochs(int): total training epochs
cycle(int): period of the cosine learning rate
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
"""
def __init__(self,
learning_rate,
step_each_epoch,
epochs,
cycle,
warmup_epoch=0,
last_epoch=-1,
**kwargs):
super(CyclicalCosine, self).__init__()
self.learning_rate = learning_rate
self.T_max = step_each_epoch * epochs
self.last_epoch = last_epoch
self.warmup_epoch = round(warmup_epoch * step_each_epoch)
self.cycle = round(cycle * step_each_epoch)
def __call__(self):
learning_rate = CyclicalCosineDecay(
learning_rate=self.learning_rate,
T_max=self.T_max,
cycle=self.cycle,
last_epoch=self.last_epoch)
if self.warmup_epoch > 0:
learning_rate = lr.LinearWarmup(
learning_rate=learning_rate,
warmup_steps=self.warmup_epoch,
start_lr=0.0,
end_lr=self.learning_rate,
last_epoch=self.last_epoch)
return learning_rate
# copyright (c) 2020 PaddlePaddle Authors. All Rights Reserve.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from paddle.optimizer.lr import LRScheduler
class CyclicalCosineDecay(LRScheduler):
def __init__(self,
learning_rate,
T_max,
cycle=1,
last_epoch=-1,
eta_min=0.0,
verbose=False):
"""
Cyclical cosine learning rate decay
A learning rate which can be referred in https://arxiv.org/pdf/2012.12645.pdf
Args:
learning rate(float): learning rate
T_max(int): maximum epoch num
cycle(int): period of the cosine decay
last_epoch (int, optional): The index of last epoch. Can be set to restart training. Default: -1, means initial learning rate.
eta_min(float): minimum learning rate during training
verbose(bool): whether to print learning rate for each epoch
"""
super(CyclicalCosineDecay, self).__init__(learning_rate, last_epoch,
verbose)
self.cycle = cycle
self.eta_min = eta_min
def get_lr(self):
if self.last_epoch == 0:
return self.base_lr
reletive_epoch = self.last_epoch % self.cycle
lr = self.eta_min + 0.5 * (self.base_lr - self.eta_min) * \
(1 + math.cos(math.pi * reletive_epoch / self.cycle))
return lr
......@@ -32,7 +32,7 @@ setup(
package_dir={'paddleocr': ''},
include_package_data=True,
entry_points={"console_scripts": ["paddleocr= paddleocr.paddleocr:main"]},
version='2.0.1',
version='2.0.2',
install_requires=requirements,
license='Apache License 2.0',
description='Awesome OCR toolkits based on PaddlePaddle (8.6M ultra-lightweight pre-trained model, support training and deployment among server, mobile, embeded and IoT devices',
......
......@@ -18,13 +18,14 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import copy
import numpy as np
import math
import time
import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
......@@ -39,7 +40,6 @@ class TextClassifier(object):
self.cls_image_shape = [int(v) for v in args.cls_image_shape.split(",")]
self.cls_batch_num = args.cls_batch_num
self.cls_thresh = args.cls_thresh
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = {
'name': 'ClsPostProcess',
"label_list": args.label_list,
......@@ -99,12 +99,8 @@ class TextClassifier(object):
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
prob_out = self.output_tensors[0].copy_to_cpu()
cls_result = self.postprocess_op(prob_out)
elapse += time.time() - starttime
......@@ -143,10 +139,11 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], cls_res[
ino]))
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
cls_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
if __name__ == "__main__":
main(utility.parse_args())
......@@ -18,11 +18,12 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import time
import sys
import paddle
import tools.infer.utility as utility
from ppocr.utils.logging import get_logger
......@@ -35,8 +36,8 @@ logger = get_logger()
class TextDetector(object):
def __init__(self, args):
self.args = args
self.det_algorithm = args.det_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
pre_process_list = [{
'DetResizeForTest': {
'limit_side_len': args.det_limit_side_len,
......@@ -70,6 +71,11 @@ class TextDetector(object):
postprocess_params["cover_thresh"] = args.det_east_cover_thresh
postprocess_params["nms_thresh"] = args.det_east_nms_thresh
elif self.det_algorithm == "SAST":
pre_process_list[0] = {
'DetResizeForTest': {
'resize_long': args.det_limit_side_len
}
}
postprocess_params['name'] = 'SASTPostProcess'
postprocess_params["score_thresh"] = args.det_sast_score_thresh
postprocess_params["nms_thresh"] = args.det_sast_nms_thresh
......@@ -157,12 +163,8 @@ class TextDetector(object):
img = img.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(img)
self.predictor.zero_copy_run()
else:
im = paddle.fluid.core.PaddleTensor(img)
self.predictor.run([im])
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
......
......@@ -18,12 +18,13 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import numpy as np
import math
import time
import traceback
import paddle.fluid as fluid
import tools.infer.utility as utility
from ppocr.postprocess import build_post_process
......@@ -39,7 +40,6 @@ class TextRecognizer(object):
self.character_type = args.rec_char_type
self.rec_batch_num = args.rec_batch_num
self.rec_algorithm = args.rec_algorithm
self.use_zero_copy_run = args.use_zero_copy_run
postprocess_params = {
'name': 'CTCLabelDecode',
"character_type": args.rec_char_type,
......@@ -101,12 +101,8 @@ class TextRecognizer(object):
norm_img_batch = np.concatenate(norm_img_batch)
norm_img_batch = norm_img_batch.copy()
starttime = time.time()
if self.use_zero_copy_run:
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run()
else:
norm_img_batch = fluid.core.PaddleTensor(norm_img_batch)
self.predictor.run([norm_img_batch])
self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
......@@ -145,8 +141,8 @@ def main(args):
"Please set --rec_image_shape='3,32,100' and --rec_char_type='en' ")
exit()
for ino in range(len(img_list)):
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino], rec_res[
ino]))
logger.info("Predicts of {}:{}".format(valid_image_file_list[ino],
rec_res[ino]))
logger.info("Total predict time for {} images, cost: {:.3f}".format(
len(img_list), predict_time))
......
......@@ -18,6 +18,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '../..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import copy
import numpy as np
......
......@@ -20,8 +20,7 @@ import numpy as np
import json
from PIL import Image, ImageDraw, ImageFont
import math
from paddle.fluid.core import AnalysisConfig
from paddle.fluid.core import create_paddle_predictor
from paddle import inference
def parse_args():
......@@ -33,7 +32,8 @@ def parse_args():
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=8000)
parser.add_argument("--use_fp16", type=str2bool, default=False)
parser.add_argument("--gpu_mem", type=int, default=500)
# params for text detector
parser.add_argument("--image_dir", type=str)
......@@ -46,7 +46,7 @@ def parse_args():
parser.add_argument("--det_db_thresh", type=float, default=0.3)
parser.add_argument("--det_db_box_thresh", type=float, default=0.5)
parser.add_argument("--det_db_unclip_ratio", type=float, default=1.6)
parser.add_argument("--max_batch_size", type=int, default=10)
# EAST parmas
parser.add_argument("--det_east_score_thresh", type=float, default=0.8)
parser.add_argument("--det_east_cover_thresh", type=float, default=0.1)
......@@ -78,12 +78,10 @@ def parse_args():
parser.add_argument("--cls_model_dir", type=str)
parser.add_argument("--cls_image_shape", type=str, default="3, 48, 192")
parser.add_argument("--label_list", type=list, default=['0', '180'])
parser.add_argument("--cls_batch_num", type=int, default=30)
parser.add_argument("--cls_batch_num", type=int, default=6)
parser.add_argument("--cls_thresh", type=float, default=0.9)
parser.add_argument("--enable_mkldnn", type=str2bool, default=False)
parser.add_argument("--use_zero_copy_run", type=str2bool, default=False)
parser.add_argument("--use_pdserving", type=str2bool, default=False)
return parser.parse_args()
......@@ -109,10 +107,15 @@ def create_predictor(args, mode, logger):
logger.info("not find params file path {}".format(params_file_path))
sys.exit(0)
config = AnalysisConfig(model_file_path, params_file_path)
config = inference.Config(model_file_path, params_file_path)
if args.use_gpu:
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
precision_mode=inference.PrecisionType.Half
if args.use_fp16 else inference.PrecisionType.Float32,
max_batch_size=args.max_batch_size)
else:
config.disable_gpu()
config.set_cpu_math_library_num_threads(6)
......@@ -120,24 +123,23 @@ def create_predictor(args, mode, logger):
# cache 10 different shapes for mkldnn to avoid memory leak
config.set_mkldnn_cache_capacity(10)
config.enable_mkldnn()
args.rec_batch_num = 1
# config.enable_memory_optim()
config.disable_glog_info()
if args.use_zero_copy_run:
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
else:
config.switch_use_feed_fetch_ops(True)
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
config.switch_use_feed_fetch_ops(False)
predictor = create_paddle_predictor(config)
# create predictor
predictor = inference.create_predictor(config)
input_names = predictor.get_input_names()
for name in input_names:
input_tensor = predictor.get_input_tensor(name)
input_tensor = predictor.get_input_handle(name)
output_names = predictor.get_output_names()
output_tensors = []
for output_name in output_names:
output_tensor = predictor.get_output_tensor(output_name)
output_tensor = predictor.get_output_handle(output_name)
output_tensors.append(output_tensor)
return predictor, input_tensor, output_tensors
......
......@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import paddle
from ppocr.data import create_operators, transform
......
......@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import cv2
import json
import paddle
......
......@@ -25,6 +25,8 @@ __dir__ = os.path.dirname(os.path.abspath(__file__))
sys.path.append(__dir__)
sys.path.append(os.path.abspath(os.path.join(__dir__, '..')))
os.environ["FLAGS_allocator_strategy"] = 'auto_growth'
import paddle
from ppocr.data import create_operators, transform
......
......@@ -131,7 +131,7 @@ def check_gpu(use_gpu):
"model on CPU"
try:
if use_gpu and not paddle.fluid.is_compiled_with_cuda():
if use_gpu and not paddle.is_compiled_with_cuda():
print(err)
sys.exit(1)
except Exception as e:
......@@ -179,9 +179,9 @@ def train(config,
if 'start_epoch' in best_model_dict:
start_epoch = best_model_dict['start_epoch']
else:
start_epoch = 0
start_epoch = 1
for epoch in range(start_epoch, epoch_num):
for epoch in range(start_epoch, epoch_num + 1):
if epoch > 0:
train_dataloader = build_dataloader(config, 'Train', device, logger)
train_batch_cost = 0.0
......@@ -332,7 +332,7 @@ def eval(model, valid_dataloader, post_process_class, eval_class):
return metirc
def preprocess():
def preprocess(is_train=False):
FLAGS = ArgsParser().parse_args()
config = load_config(FLAGS.config)
merge_config(FLAGS.opt)
......@@ -350,15 +350,17 @@ def preprocess():
device = paddle.set_device(device)
config['Global']['distributed'] = dist.get_world_size() != 1
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(dict(config), f, default_flow_style=False, sort_keys=False)
logger = get_logger(
name='root', log_file='{}/train.log'.format(save_model_dir))
if is_train:
# save_config
save_model_dir = config['Global']['save_model_dir']
os.makedirs(save_model_dir, exist_ok=True)
with open(os.path.join(save_model_dir, 'config.yml'), 'w') as f:
yaml.dump(
dict(config), f, default_flow_style=False, sort_keys=False)
log_file = '{}/train.log'.format(save_model_dir)
else:
log_file = None
logger = get_logger(name='root', log_file=log_file)
if config['Global']['use_visualdl']:
from visualdl import LogWriter
vdl_writer_path = '{}/vdl/'.format(save_model_dir)
......
......@@ -110,6 +110,6 @@ def test_reader(config, device, logger):
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
config, device, logger, vdl_writer = program.preprocess(is_train=True)
main(config, device, logger, vdl_writer)
# test_reader(config, device, logger)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册