未验证 提交 e4d49819 编写于 作者: D Double_V 提交者: GitHub

Merge branch 'dygraph' into autolog

......@@ -230,15 +230,8 @@ class GridGenerator(nn.Layer):
def build_inv_delta_C_paddle(self, C):
""" Return inv_delta_C which is needed to calculate T """
F = self.F
hat_C = paddle.zeros((F, F), dtype='float64') # F x F
for i in range(0, F):
for j in range(i, F):
if i == j:
hat_C[i, j] = 1
else:
r = paddle.norm(C[i] - C[j])
hat_C[i, j] = r
hat_C[j, i] = r
hat_eye = paddle.eye(F, dtype='float64') # F x F
hat_C = paddle.norm(C.reshape([1, F, 2]) - C.reshape([F, 1, 2]), axis=2) + hat_eye
hat_C = (hat_C**2) * paddle.log(hat_C)
delta_C = paddle.concat( # F+3 x F+3
[
......
......@@ -30,22 +30,32 @@ Types 1-4 follow the traditional OCR process, and 5 follow the Table OCR process
[doc](table/README.md)
## 4. PaddleStructure whl package introduction
## 4. Predictive by inference engine
### 4.1 Use
Use the following commands to complete the inference
```python
python3 table/predict_system.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
After running, each image will have a directory with the same name under the directory specified in the output field. Each table in the picture will be stored as an excel, and the excel file name will be the coordinates of the table in the image.
## 5. PaddleStructure whl package introduction
4.1.1 Use by code
### 5.1 Use
5.1.1 Use by code
```python
import os
import cv2
from paddlestructure import PaddleStructure,draw_result
from paddlestructure import PaddleStructure,draw_result,save_res
table_engine = PaddleStructure(
output='./output/table',
show_log=True)
table_engine = PaddleStructure(show_log=True)
save_folder = './output/table'
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
print(line)
......@@ -58,19 +68,19 @@ im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
4.1.2 Use by command line
5.1.2 Use by command line
```bash
paddlestructure --image_dir=../doc/table/1.png
```
### 参数说明
大部分参数和paddleocr whl包保持一致,见 [whl包文档](../doc/doc_ch/whl.md)
### Parameter Description
Most of the parameters are consistent with the paddleocr whl package, see [whl package documentation](../doc/doc_ch/whl.md)
| 字段 | 说明 | 默认值 |
| Parameter | Description | Default |
|------------------------|------------------------------------------------------|------------------|
| output | excel和识别结果保存的地址 | ./output/table |
| structure_max_len | structure模型预测时,图像的长边resize尺度 | 488 |
| structure_model_dir | structure inference 模型地址 | None |
| structure_char_type | structure 模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.tx |
| output | The path where excel and recognition results are saved | ./output/table |
| structure_max_len | When the table structure model predicts, the long side of the image is resized | 488 |
| structure_model_dir | Table structure inference model path | None |
| structure_char_type | Dictionary path used by table structure model | ../ppocr/utils/dict/table_structure_dict.tx |
......@@ -30,22 +30,32 @@ PaddleStructure 是一个用于复杂板式文字OCR的工具包,流程如下
[文档](table/README_ch.md)
## 4. PaddleStructure whl包介绍
## 4. 预测引擎推理
### 4.1 使用
使用如下命令即可完成预测引擎的推理
```python
python3 table/predict_system.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
运行完成后,每张图片会output字段指定的目录下有一个同名目录,图片里的每个表格会存储为一个excel,excel文件名为表格在图片里的坐标。
## 5. PaddleStructure whl包介绍
4.1.1 代码使用
### 5.1 使用
5.1.1 代码使用
```python
import os
import cv2
from paddlestructure import PaddleStructure,draw_result
from paddlestructure import PaddleStructure,draw_result,save_res
table_engine = PaddleStructure(
output='./output/table',
show_log=True)
table_engine = PaddleStructure(show_log=True)
save_folder = './output/table'
img_path = '../doc/table/1.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_res(result, save_folder,os.path.basename(img_path).split('.')[0])
for line in result:
print(line)
......@@ -58,7 +68,7 @@ im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
```
4.1.2 命令行使用
5.1.2 命令行使用
```bash
paddlestructure --image_dir=../doc/table/1.png
```
......@@ -69,8 +79,8 @@ paddlestructure --image_dir=../doc/table/1.png
| 字段 | 说明 | 默认值 |
|------------------------|------------------------------------------------------|------------------|
| output | excel和识别结果保存的地址 | ./output/table |
| structure_max_len | structure模型预测时,图像的长边resize尺度 | 488 |
| structure_model_dir | structure inference 模型地址 | None |
| structure_char_type | structure 模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.tx |
| table_max_len | 表格结构模型预测时,图像的长边resize尺度 | 488 |
| table_model_dir | 表格结构模型 inference 模型地址 | None |
| table_char_type | 表格结构模型所用字典地址 | ../ppocr/utils/dict/table_structure_dict.tx |
......@@ -32,7 +32,7 @@ logger = get_logger()
from ppocr.utils.utility import check_and_read_gif, get_image_file_list
from ppocr.utils.network import maybe_download, download_with_progressbar, confirm_model_dir_url, is_link
__all__ = ['PaddleStructure', 'draw_result', 'to_excel']
__all__ = ['PaddleStructure', 'draw_result', 'save_res']
VERSION = '2.1'
BASE_DIR = os.path.expanduser("~/.paddlestructure/")
......@@ -40,7 +40,7 @@ BASE_DIR = os.path.expanduser("~/.paddlestructure/")
model_urls = {
'det': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_det_infer.tar',
'rec': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_rec_infer.tar',
'structure': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar'
'table': 'https://paddleocr.bj.bcebos.com/dygraph_v2.0/table/en_ppocr_mobile_v2.0_table_structure_infer.tar'
}
......@@ -51,7 +51,7 @@ def parse_args(mMain=True):
parser.add_help = mMain
for action in parser._actions:
if action.dest in ['rec_char_dict_path', 'structure_char_dict_path']:
if action.dest in ['rec_char_dict_path', 'table_char_dict_path']:
action.default = None
if mMain:
return parser.parse_args()
......@@ -76,13 +76,13 @@ class PaddleStructure(OCRSystem):
params.rec_model_dir, rec_url = confirm_model_dir_url(params.rec_model_dir,
os.path.join(BASE_DIR, VERSION, 'rec'),
model_urls['rec'])
params.structure_model_dir, structure_url = confirm_model_dir_url(params.structure_model_dir,
os.path.join(BASE_DIR, VERSION, 'structure'),
model_urls['structure'])
params.table_model_dir, table_url = confirm_model_dir_url(params.table_model_dir,
os.path.join(BASE_DIR, VERSION, 'table'),
model_urls['table'])
# download model
maybe_download(params.det_model_dir, det_url)
maybe_download(params.rec_model_dir, rec_url)
maybe_download(params.structure_model_dir, structure_url)
maybe_download(params.table_model_dir, table_url)
if params.rec_char_dict_path is None:
params.rec_char_type = 'EN'
......@@ -90,12 +90,12 @@ class PaddleStructure(OCRSystem):
params.rec_char_dict_path = str(Path(__file__).parent / 'ppocr/utils/dict/table_dict.txt')
else:
params.rec_char_dict_path = str(Path(__file__).parent.parent / 'ppocr/utils/dict/table_dict.txt')
if params.structure_char_dict_path is None:
if params.table_char_dict_path is None:
if os.path.exists(str(Path(__file__).parent / 'ppocr/utils/dict/table_structure_dict.txt')):
params.structure_char_dict_path = str(
params.table_char_dict_path = str(
Path(__file__).parent / 'ppocr/utils/dict/table_structure_dict.txt')
else:
params.structure_char_dict_path = str(
params.table_char_dict_path = str(
Path(__file__).parent.parent / 'ppocr/utils/dict/table_structure_dict.txt')
print(params)
......@@ -145,4 +145,24 @@ def main():
for item in result:
logger.info(item['res'])
save_res(result, save_folder, img_name)
logger.info('result save to {}'.format(os.path.join(save_folder, img_name)))
\ No newline at end of file
logger.info('result save to {}'.format(os.path.join(save_folder, img_name)))
if __name__ == '__main__':
table_engine = PaddleStructure(show_log=True)
img_path = '../test/test_imgs/PMC1173095_006_00.png'
img = cv2.imread(img_path)
result = table_engine(img)
save_res(result, '/Users/zhoujun20/Desktop/工作相关/table/table_pr/PaddleOCR/output/table',
os.path.basename(img_path).split('.')[0])
for line in result:
print(line)
from PIL import Image
font_path = '../doc/fonts/simfang.ttf'
image = Image.open(img_path).convert('RGB')
im_show = draw_result(image, result, font_path=font_path)
im_show = Image.fromarray(im_show)
im_show.save('result.jpg')
\ No newline at end of file
......@@ -36,7 +36,7 @@ In gt json, the key is the image name, the value is the corresponding gt, and gt
Use the following command to evaluate. After the evaluation is completed, the teds indicator will be output.
```python
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
```
......@@ -44,6 +44,6 @@ python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_di
First cd to the PaddleOCR/ppstructure directory
```python
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
After running, the excel sheet of each picture will be saved in the directory specified by the table_output field
\ No newline at end of file
After running, the excel sheet of each picture will be saved in the directory specified by the output field
\ No newline at end of file
......@@ -36,7 +36,7 @@ json 中,key为图片名,value为对于的gt,gt是一个由四个item组
准备完成后使用如下命令进行评估,评估完成后会输出teds指标。
```python
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --gt_path=path/to/gt.json
```
......@@ -44,6 +44,6 @@ python3 table/eval_table.py --det_model_dir=path/to/det_model_dir --rec_model_di
先cd到PaddleOCR/ppstructure目录下
```python
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --structure_model_dir=path/to/structure_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --structure_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
python3 table/predict_table.py --det_model_dir=path/to/det_model_dir --rec_model_dir=path/to/rec_model_dir --table_model_dir=path/to/table_model_dir --image_dir=../doc/table/1.png --rec_char_dict_path=../ppocr/utils/dict/table_dict.txt --table_char_dict_path=../ppocr/utils/dict/table_structure_dict.txt --rec_char_type=EN --det_limit_side_len=736 --det_limit_type=min --output ../output/table
```
运行完成后,每张图片的excel表格会保存到table_output字段指定的目录下
运行完成后,每张图片的excel表格会保存到output字段指定的目录下
......@@ -41,7 +41,7 @@ class TableStructurer(object):
def __init__(self, args):
pre_process_list = [{
'ResizeTableImage': {
'max_len': args.structure_max_len
'max_len': args.table_max_len
}
}, {
'NormalizeImage': {
......@@ -61,14 +61,14 @@ class TableStructurer(object):
}]
postprocess_params = {
'name': 'TableLabelDecode',
"character_type": args.structure_char_type,
"character_dict_path": args.structure_char_dict_path,
"character_type": args.table_char_type,
"character_dict_path": args.table_char_dict_path,
}
self.preprocess_op = create_operators(pre_process_list)
self.postprocess_op = build_post_process(postprocess_params)
self.predictor, self.input_tensor, self.output_tensors, self.config = \
utility.create_predictor(args, 'structure', logger)
utility.create_predictor(args, 'table', logger)
def __call__(self, img):
ori_im = img.copy()
......
......@@ -23,10 +23,10 @@ def init_args():
# params for output
parser.add_argument("--output", type=str, default='./output/table')
# params for table structure
parser.add_argument("--structure_max_len", type=int, default=488)
parser.add_argument("--structure_model_dir", type=str)
parser.add_argument("--structure_char_type", type=str, default='en')
parser.add_argument("--structure_char_dict_path", type=str, default="../ppocr/utils/dict/table_structure_dict.txt")
parser.add_argument("--table_max_len", type=int, default=488)
parser.add_argument("--table_model_dir", type=str)
parser.add_argument("--table_char_type", type=str, default='en')
parser.add_argument("--table_char_dict_path", type=str, default="../ppocr/utils/dict/table_structure_dict.txt")
return parser
......
......@@ -257,7 +257,8 @@ if __name__ == "__main__":
img_name_pure = os.path.split(image_file)[-1]
img_path = os.path.join(draw_img_save,
"det_res_{}".format(img_name_pure))
cv2.imwrite(img_path, src_im)
logger.info("The visualized image saved in {}".format(img_path))
text_detector.autolog.report()
......@@ -322,7 +322,8 @@ def main(args):
'total_time_s': rec_time_dict['total_time']
}
benchmark_log = benchmark_utils.PaddleInferBenchmark(
text_recognizer.config, model_info, data_info, perf_info, mems)
text_recognizer.config, model_info, data_info, perf_info, mems,
args.save_log_path)
benchmark_log("Rec")
......
......@@ -37,6 +37,7 @@ def init_args():
parser.add_argument("--use_gpu", type=str2bool, default=True)
parser.add_argument("--ir_optim", type=str2bool, default=True)
parser.add_argument("--use_tensorrt", type=str2bool, default=False)
parser.add_argument("--min_subgraph_size", type=int, default=3)
parser.add_argument("--precision", type=str, default="fp32")
parser.add_argument("--gpu_mem", type=int, default=500)
......@@ -201,8 +202,8 @@ def create_predictor(args, mode, logger):
model_dir = args.cls_model_dir
elif mode == 'rec':
model_dir = args.rec_model_dir
elif mode == 'structure':
model_dir = args.structure_model_dir
elif mode == 'table':
model_dir = args.table_model_dir
else:
model_dir = args.e2e_model_dir
......@@ -236,12 +237,14 @@ def create_predictor(args, mode, logger):
config.enable_tensorrt_engine(
precision_mode=inference.PrecisionType.Float32,
max_batch_size=args.max_batch_size,
min_subgraph_size=3) # skip the minmum trt subgraph
if mode == "det" and "mobile" in model_file_path:
min_subgraph_size=args.min_subgraph_size)
# skip the minmum trt subgraph
if mode == "det":
min_input_shape = {
"x": [1, 3, 50, 50],
"conv2d_92.tmp_0": [1, 96, 20, 20],
"conv2d_91.tmp_0": [1, 96, 10, 10],
"conv2d_59.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_1.tmp_0": [1, 96, 10, 10],
"nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
......@@ -254,6 +257,7 @@ def create_predictor(args, mode, logger):
"x": [1, 3, 2000, 2000],
"conv2d_92.tmp_0": [1, 96, 400, 400],
"conv2d_91.tmp_0": [1, 96, 200, 200],
"conv2d_59.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_1.tmp_0": [1, 96, 200, 200],
"nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
......@@ -266,6 +270,7 @@ def create_predictor(args, mode, logger):
"x": [1, 3, 640, 640],
"conv2d_92.tmp_0": [1, 96, 160, 160],
"conv2d_91.tmp_0": [1, 96, 80, 80],
"conv2d_59.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_1.tmp_0": [1, 96, 80, 80],
"nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
......@@ -274,31 +279,6 @@ def create_predictor(args, mode, logger):
"elementwise_add_7": [1, 56, 40, 40],
"nearest_interp_v2_0.tmp_0": [1, 96, 40, 40]
}
if mode == "det" and "server" in model_file_path:
min_input_shape = {
"x": [1, 3, 50, 50],
"conv2d_59.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_2.tmp_0": [1, 96, 20, 20],
"nearest_interp_v2_3.tmp_0": [1, 24, 20, 20],
"nearest_interp_v2_4.tmp_0": [1, 24, 20, 20],
"nearest_interp_v2_5.tmp_0": [1, 24, 20, 20]
}
max_input_shape = {
"x": [1, 3, 2000, 2000],
"conv2d_59.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_2.tmp_0": [1, 96, 400, 400],
"nearest_interp_v2_3.tmp_0": [1, 24, 400, 400],
"nearest_interp_v2_4.tmp_0": [1, 24, 400, 400],
"nearest_interp_v2_5.tmp_0": [1, 24, 400, 400]
}
opt_input_shape = {
"x": [1, 3, 640, 640],
"conv2d_59.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_2.tmp_0": [1, 96, 160, 160],
"nearest_interp_v2_3.tmp_0": [1, 24, 160, 160],
"nearest_interp_v2_4.tmp_0": [1, 24, 160, 160],
"nearest_interp_v2_5.tmp_0": [1, 24, 160, 160]
}
elif mode == "rec":
min_input_shape = {"x": [args.rec_batch_num, 3, 32, 10]}
max_input_shape = {"x": [args.rec_batch_num, 3, 32, 2000]}
......@@ -331,7 +311,7 @@ def create_predictor(args, mode, logger):
config.disable_glog_info()
config.delete_pass("conv_transpose_eltwiseadd_bn_fuse_pass")
if mode == 'structure':
if mode == 'table':
config.delete_pass("fc_fuse_pass") # not supported for table
config.switch_use_feed_fetch_ops(False)
config.switch_ir_optim(True)
......
......@@ -112,4 +112,4 @@ def main():
if __name__ == '__main__':
config, device, logger, vdl_writer = program.preprocess()
main()
\ No newline at end of file
main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册