提交 d517e1b7 编写于 作者: T tink2123

update serving

上级 76946e83
......@@ -29,7 +29,9 @@ PaddleOCR提供2种服务部署方式:
需要准备PaddleOCR的运行环境和Paddle Serving的运行环境。
- 准备PaddleOCR的运行环境参考[链接](../../doc/doc_ch/installation.md)
- 准备PaddleOCR的运行环境[链接](../../doc/doc_ch/installation.md)
根据环境下载对应的paddle whl包,
推荐2.0.1版本:https://www.paddlepaddle.org.cn/whl/mkl/stable.html
- 准备PaddleServing的运行环境,步骤如下
......@@ -45,25 +47,16 @@ PaddleOCR提供2种服务部署方式:
```
2. 安装client,用于向服务发送请求
```
pip3 install paddle-serving-client==0.5.0 # for CPU
[下载链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)中找到对应python版本的client安装包,这里推荐python3.7版本:
pip3 install paddle-serving-client-gpu==0.5.0 # for GPU
```
wget https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp37-none-any.whl
pip3 install paddle_serving_client-0.0.0-cp37-none-any.whl
```
3. 安装serving-app
```
pip3 install paddle-serving-app==0.3.0
```
**note:** 安装0.3.0版本的serving-app后,为了能加载动态图模型,需要修改serving_app的源码,具体为:
```
# 找到paddle_serving_app的安装目录,找到并编辑local_predict.py文件
vim /usr/local/lib/python3.7/site-packages/paddle_serving_app/local_predict.py
# 将local_predict.py 的第85行 config = AnalysisConfig(model_path) 替换为:
if os.path.exists(os.path.join(model_path, "__params__")):
config = AnalysisConfig(os.path.join(model_path, "__model__"), os.path.join(model_path, "__params__"))
else:
config = AnalysisConfig(model_path)
pip3 install paddle-serving-app==0.3.1
```
**Note:** 如果要安装最新版本的PaddleServing参考[链接](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)。
......
#rpc端口, rpc_port和http_port不允许同时为空。当rpc_port为空且http_port不为空时,会自动将rpc_port设置为http_port+1
rpc_port: 18090
rpc_port: 18091
#http端口, rpc_port和http_port不允许同时为空。当rpc_port可用且http_port为空时,不自动生成http_port
http_port: 9999
http_port: 9998
#worker_num, 最大并发数。当build_dag_each_worker=True时, 框架会创建worker_num个进程,每个进程内构建grpcSever和DAG
##当build_dag_each_worker=False时,框架会设置主线程grpc线程池的max_workers=worker_num
worker_num: 20
worker_num: 5
#build_dag_each_worker, False,框架在进程内创建一条DAG;True,框架会每个进程内创建多个独立的DAG
build_dag_each_worker: false
build_dag_each_worker: False
dag:
#op资源类型, True, 为线程模型;False,为进程模型
is_thread_op: False
#重试次数
retry: 1
retry: 10
#使用性能分析, True,生成Timeline性能数据,对性能有一定影响;False为不使用
use_profile: False
use_profile: True
tracer:
interval_s: 10
op:
det:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 4
concurrency: 2
#当op配置没有server_endpoints时,从local_service_conf读取本地服务配置
local_service_conf:
......@@ -34,15 +34,15 @@ op:
client_type: local_predictor
#det模型路径
model_config: /paddle/serving/models/det_serving_server/ #ocr_det_model
model_config: ./ppocr_det_server_2.0_serving
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["save_infer_model/scale_0.tmp_1"]
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "2"
devices: "0"
ir_optim: True
ir_optim: False
rec:
#并发数,is_thread_op=True时,为线程并发;否则为进程并发
concurrency: 1
......@@ -60,12 +60,12 @@ op:
client_type: local_predictor
#rec模型路径
model_config: /paddle/serving/models/rec_serving_server/ #ocr_rec_model
model_config: ./ppocr_rec_server_2.0_serving
#Fetch结果列表,以client_config中fetch_var的alias_name为准
fetch_list: ["save_infer_model/scale_0.tmp_1"] #["ctc_greedy_decoder_0.tmp_0", "softmax_0.tmp_0"]
fetch_list: ["save_infer_model/scale_0.tmp_1"]
#计算硬件ID,当devices为""或不写时为CPU预测;当devices为"0", "0,1,2"时为GPU预测,表示使用的GPU卡
devices: "2"
devices: "0"
ir_optim: True
ir_optim: False
......@@ -21,7 +21,6 @@ import sys
import argparse
import string
from copy import deepcopy
import paddle
class DetResizeForTest(object):
......@@ -227,8 +226,8 @@ class CTCLabelDecode(BaseRecLabelDecode):
super(CTCLabelDecode, self).__init__(config)
def __call__(self, preds, label=None, *args, **kwargs):
if isinstance(preds, paddle.Tensor):
preds = preds.numpy()
#if isinstance(preds, paddle.Tensor):
# preds = preds.numpy()
preds_idx = preds.argmax(axis=2)
preds_prob = preds.max(axis=2)
text = self.decode(preds_idx, preds_prob, is_remove_duplicate=True)
......
......@@ -23,8 +23,8 @@ def cv2_to_base64(image):
return base64.b64encode(image).decode('utf8')
url = "http://127.0.0.1:9999/ocr/prediction"
test_img_dir = "../doc/imgs/"
url = "http://127.0.0.1:9998/ocr/prediction"
test_img_dir = "../../doc/imgs/"
for idx, img_file in enumerate(os.listdir(test_img_dir)):
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read()
......@@ -36,5 +36,5 @@ for idx, img_file in enumerate(os.listdir(test_img_dir)):
r = requests.post(url=url, data=json.dumps(data))
print(r.json())
test_img_dir = "../doc/imgs/"
test_img_dir = "../../doc/imgs/"
print("==> total number of test imgs: ", len(os.listdir(test_img_dir)))
......@@ -23,7 +23,7 @@ import base64
import os
client = PipelineClient()
client.connect(['127.0.0.1:18090'])
client.connect(['127.0.0.1:18091'])
def cv2_to_base64(image):
......@@ -39,4 +39,3 @@ for img_file in os.listdir(test_img_dir):
for i in range(1):
ret = client.predict(feed_dict={"image": image}, fetch=["res"])
print(ret)
#print(ret)
......@@ -56,11 +56,9 @@ class DetOp(Op):
det_img = self.det_preprocess(self.im)
_, self.new_h, self.new_w = det_img.shape
print("det image shape", det_img.shape)
return {"x": det_img[np.newaxis, :].copy()}, False, None, ""
def postprocess(self, input_dicts, fetch_dict, log_id):
print("input_dicts: ", input_dicts)
det_out = fetch_dict["save_infer_model/scale_0.tmp_1"]
ratio_list = [
float(self.new_h) / self.ori_h, float(self.new_w) / self.ori_w
......@@ -69,7 +67,6 @@ class DetOp(Op):
dt_boxes = self.filter_func(dt_boxes_list[0], [self.ori_h, self.ori_w])
out_dict = {"dt_boxes": dt_boxes, "image": self.im}
print("out dict", out_dict["dt_boxes"])
return out_dict, None, ""
......@@ -89,29 +86,67 @@ class RecOp(Op):
feed_list = []
img_list = []
max_wh_ratio = 0
for i, dtbox in enumerate(dt_boxes):
boximg = self.get_rotate_crop_image(im, dt_boxes[i])
img_list.append(boximg)
h, w = boximg.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
max_wh_ratio).shape
imgs = np.zeros((len(img_list), 3, w, h)).astype('float32')
for id, img in enumerate(img_list):
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
imgs[id] = norm_img
print("rec image shape", imgs.shape)
feed = {"x": imgs.copy()}
return feed, False, None, ""
def postprocess(self, input_dicts, fetch_dict, log_id):
rec_res = self.ocr_reader.postprocess(fetch_dict, with_score=True)
res_lst = []
for res in rec_res:
res_lst.append(res[0])
res = {"res": str(res_lst)}
## Many mini-batchs, the type of feed_data is list.
max_batch_size = 6 # len(dt_boxes)
# If max_batch_size is 0, skipping predict stage
if max_batch_size == 0:
return {}, True, None, ""
boxes_size = len(dt_boxes)
batch_size = boxes_size // max_batch_size
rem = boxes_size % max_batch_size
#_LOGGER.info("max_batch_len:{}, batch_size:{}, rem:{}, boxes_size:{}".format(max_batch_size, batch_size, rem, boxes_size))
for bt_idx in range(0, batch_size + 1):
imgs = None
boxes_num_in_one_batch = 0
if bt_idx == batch_size:
if rem == 0:
continue
else:
boxes_num_in_one_batch = rem
elif bt_idx < batch_size:
boxes_num_in_one_batch = max_batch_size
else:
_LOGGER.error("batch_size error, bt_idx={}, batch_size={}".
format(bt_idx, batch_size))
break
start = bt_idx * max_batch_size
end = start + boxes_num_in_one_batch
img_list = []
for box_idx in range(start, end):
boximg = self.get_rotate_crop_image(im, dt_boxes[box_idx])
img_list.append(boximg)
h, w = boximg.shape[0:2]
wh_ratio = w * 1.0 / h
max_wh_ratio = max(max_wh_ratio, wh_ratio)
_, w, h = self.ocr_reader.resize_norm_img(img_list[0],
max_wh_ratio).shape
imgs = np.zeros((boxes_num_in_one_batch, 3, w, h)).astype('float32')
for id, img in enumerate(img_list):
norm_img = self.ocr_reader.resize_norm_img(img, max_wh_ratio)
imgs[id] = norm_img
feed = {"x": imgs.copy()}
feed_list.append(feed)
return feed_list, False, None, ""
def postprocess(self, input_dicts, fetch_data, log_id):
res_list = []
if isinstance(fetch_data, dict):
if len(fetch_data) > 0:
rec_batch_res = self.ocr_reader.postprocess(
fetch_data, with_score=True)
for res in rec_batch_res:
res_list.append(res[0])
elif isinstance(fetch_data, list):
for one_batch in fetch_data:
one_batch_res = self.ocr_reader.postprocess(
one_batch, with_score=True)
for res in one_batch_res:
res_list.append(res[0])
res = {"res": str(res_list)}
return res, None, ""
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册