@@ -206,7 +206,7 @@ the table and pop up Excel at the same time.
- Model language switching: Changing the built-in model language is supportable by clicking "PaddleOCR"-"Choose OCR Model" in the menu bar. Currently supported languagesinclude French, German, Korean, and Japanese.
For specific model download links, please refer to [PaddleOCR Model List](https://github.com/PaddlePaddle/PaddleOCR/blob/develop/doc/doc_en/models_list_en.md#multilingual-recognition-modelupdating)
-**Custom Model**: If users want to replace the built-in model with their own inference model, they can follow the [Custom Model Code Usage](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_en/whl_en.md#31-use-by-code) by modifying PPOCRLabel.py for [Instantiation of PaddleOCR class](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/PPOCRLabel/PPOCRLabel.py#L86) :
-**Custom Model**: If users want to replace the built-in model with their own inference model, they can follow the [Custom Model Code Usage](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.3/doc/doc_en/whl_en.md#31-use-by-code) by modifying PPOCRLabel.py for [Instantiation of PaddleOCR class](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.5/PPOCRLabel/PPOCRLabel.py#L97) :
@@ -40,7 +40,7 @@ Please prepare your environment referring to [prepare the environment](./environ
The above EAST model is trained using the ICDAR2015 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md).
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
@@ -37,7 +37,7 @@ Please prepare your environment referring to [prepare the environment](./environ
The above FCE model is trained using the CTW1500 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md).
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
@@ -39,7 +39,7 @@ Please prepare your environment referring to [prepare the environment](./environ
The above PSE model is trained using the ICDAR2015 text detection public dataset. For the download of the dataset, please refer to [ocr_datasets](./dataset/ocr_datasets_en.md).
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
After the data download is complete, please refer to [Text Detection Training Tutorial](./detection_en.md) for training. PaddleOCR has modularized the code structure, so that you only need to **replace the configuration file** to train different detection models.
@@ -36,7 +36,7 @@ The results of detection and recognition are as follows:
<aname="Environment_Configuration"></a>
## 2. Environment Configuration
Please refer to [Operation Environment Preparation](./environment_en.md) to configure PaddleOCR operating environment first, refer to [PaddleOCR Overview and Project Clone](./paddleOCR_overview_en.md) to clone the project
Please refer to [Operation Environment Preparation](./environment_en.md) to configure PaddleOCR operating environment first, refer to [Project Clone](./clone_en.md) to clone the project
**Note:** Additional data, like icdar2013, icdar2017, COCO-Text, ArT, was added to the model training of SAST. Download English public dataset in organized format used by PaddleOCR from:
@@ -33,13 +33,13 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval
<aname="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
@@ -33,13 +33,13 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval
<aname="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
@@ -29,13 +29,13 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval
<aname="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
@@ -31,13 +31,13 @@ Note:In addition to using the two text recognition datasets MJSynth and SynthTex
<aname="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
@@ -31,13 +31,13 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval
<aname="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
@@ -30,13 +30,13 @@ Using MJSynth and SynthText two text recognition datasets for training, and eval
<aname="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
-[3. Model Training / Evaluation / Prediction](#3)
-[3.1 Training](#3-1)
-[3.2 Evaluation](#3-2)
-[3.3 Prediction](#3-3)
-[4. Inference and Deployment](#4)
-[4.1 Python Inference](#4-1)
-[4.2 C++ Inference](#4-2)
-[4.3 Serving](#4-3)
-[4.4 More](#4-4)
-[5. FAQ](#5)
<aname="1"></a>
## 1. Introduction
Paper information:
> [STAR-Net: a spatial attention residue network for scene text recognition.](http://www.bmva.org/bmvc/2016/papers/paper043/paper043.pdf)
> Wei Liu, Chaofeng Chen, Kwan-Yee K. Wong, Zhizhong Su and Junyu Han.
> BMVC, pages 43.1-43.13, 2016
Refer to [DTRB](https://arxiv.org/abs/1904.01906) text Recognition Training and Evaluation Process . Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Please refer to [Operating Environment Preparation](./environment_en.md) to configure the PaddleOCR operating environment, and refer to [Project Clone](./clone_en.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Training Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**. Take the backbone network based on Resnet34_vd as an example:
<aname="3-1"></a>
### 3.1 Training
After the data preparation is complete, the training can be started. The training command is as follows:
````
#Single card training (long training period, not recommended)
python3 tools/train.py -c configs/rec/rec_r34_vd_tps_bilstm_ctc.yml #Multi-card training, specify the card number through the --gpus parameter
First, convert the model saved during the STAR-Net text recognition training process into an inference model. Take the model trained on the MJSynth and SynthText text recognition datasets based on the Resnet34_vd backbone network as an example [Model download address](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar) , which can be converted using the following command:
Predicts of ./doc/imgs_words_en/word_336.png:('super', 0.9999073)
```
**Attention** Since the above model refers to the [DTRB](https://arxiv.org/abs/1904.01906) text recognition training and evaluation process, it is different from the ultra-lightweight Chinese recognition model training in two aspects:
- The image resolutions used during training are different. The image resolutions used for training the above models are [3, 32, 100], while for Chinese model training, in order to ensure the recognition effect of long texts, the image resolutions used during training are [ 3, 32, 320]. The default shape parameter of the predictive inference program is the image resolution used for training Chinese, i.e. [3, 32, 320]. Therefore, when inferring the above English model here, it is necessary to set the shape of the recognized image through the parameter rec_image_shape.
- Character list, the experiment in the DTRB paper is only for 26 lowercase English letters and 10 numbers, a total of 36 characters. All uppercase and lowercase characters are converted to lowercase characters, and characters not listed above are ignored and considered spaces. Therefore, there is no input character dictionary here, but a dictionary is generated by the following command. Therefore, the parameter rec_char_dict_path needs to be set during inference, which is specified as an English dictionary "./ppocr/utils/ic15_dict.txt".
After preparing the inference model, refer to the [cpp infer](../../deploy/cpp_infer/) tutorial to operate.
<a name="4-3"></a>
### 4.3 Serving
After preparing the inference model, refer to the [pdserving](../../deploy/pdserving/) tutorial for Serving deployment, including two modes: Python Serving and C++ Serving.
<a name="4-4"></a>
### 4.4 More
The STAR-Net model also supports the following inference deployment methods:
- Paddle2ONNX Inference: After preparing the inference model, refer to the [paddle2onnx](../../deploy/paddle2onnx/) tutorial.
<a name="5"></a>
## 5. FAQ
## Quote
```bibtex
@inproceedings{liu2016star,
title={STAR-Net: a spatial attention residue network for scene text recognition.},
author={Liu, Wei and Chen, Chaofeng and Wong, Kwan-Yee K and Su, Zhizhong and Han, Junyu},
@@ -34,7 +34,7 @@ The accuracy (%) and model files of SVTR on the public dataset of scene text rec
<aname="2"></a>
## 2. Environment
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to ["Environment Preparation"](./environment_en.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone_en.md) to clone the project code.
#### Dataset Preparation
...
...
@@ -44,7 +44,7 @@ Please refer to ["Environment Preparation"](./environment.md) to configure the P
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Please refer to [Text Recognition Tutorial](./recognition_en.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
If DML is used, that is, the method of two small models learning from each other, the Teacher network structure in the above configuration file needs to be set to the same configuration as the Student model.
Refer to the configuration file for details. [ch_PP-OCRv3_det_dml.yml](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.4/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml)
Refer to the configuration file for details. [ch_PP-OCRv3_det_dml.yml](../../configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_dml.yml)
The following describes the configuration file parameters [ch_PP-OCRv3_det_cml.yml](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.4/configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml):
The following describes the configuration file parameters [ch_PP-OCRv3_det_cml.yml](../../configs/det/ch_PP-OCRv3/ch_PP-OCRv3_det_cml.yml):
@@ -20,7 +20,7 @@ The downloadable models provided by PaddleOCR include `inference model`, `traine
|model type|model format|description|
|--- | --- | --- |
|inference model|inference.pdmodel、inference.pdiparams|Used for inference based on Paddle inference engine,[detail](./inference_en.md)|
|inference model|inference.pdmodel、inference.pdiparams|Used for inference based on Paddle inference engine,[detail](./inference_ppocr_en.md)|
|trained model, pre-trained model|\*.pdparams、\*.pdopt、\*.states |The checkpoints model saved in the training process, which stores the parameters of the model, mostly used for model evaluation and continuous training.|
|nb model|\*.nb| Model optimized by Paddle-Lite, which is suitable for mobile-side deployment scenarios (Paddle-Lite is needed for nb model deployment). |
...
...
@@ -37,7 +37,7 @@ Relationship of the above models is as follows.
|en_PP-OCRv3_rec_slim | [New] Slim qunatization with distillation lightweight model, supporting english, English text recognition |[en_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml)| 3.2M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/PP-OCRv3_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_train.tar) / [nb model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_infer.nb) |
|en_PP-OCRv3_rec_slim | [New] Slim qunatization with distillation lightweight model, supporting english, English text recognition |[en_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml)| 3.2M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_train.tar) / [nb model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_slim_infer.nb) |
|en_PP-OCRv3_rec| [New] Original lightweight model, supporting english, English, multilingual text recognition |[en_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/en_PP-OCRv3_rec.yml)| 9.6M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/english/en_PP-OCRv3_rec_train.tar) |
|en_number_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)| 2.7M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/en_number_mobile_v2.0_rec_slim_train.tar) |
|en_number_mobile_v2.0_rec|Original lightweight model, supporting English and number recognition|[rec_en_number_lite_train.yml](../../configs/rec/multi_language/rec_en_number_lite_train.yml)|2.6M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/multilingual/en_number_mobile_v2.0_rec_train.tar) |
...
...
@@ -108,7 +108,7 @@ Relationship of the above models is as follows.
| ka_PP-OCRv3_rec | ppocr/utils/dict/ka_dict.txt | Lightweight model for Kannada recognition |[ka_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/ka_PP-OCRv3_rec.yml)|9.9M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ka_PP-OCRv3_rec_train.tar) |
| ta_PP-OCRv3_rec | ppocr/utils/dict/ta_dict.txt |Lightweight model for Tamil recognition|[ta_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/ta_PP-OCRv3_rec.yml)|9.6M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/ta_PP-OCRv3_rec_train.tar) |
| latin_PP-OCRv3_rec | ppocr/utils/dict/latin_dict.txt | Lightweight model for latin recognition | [latin_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/latin_PP-OCRv3_rec.yml) |9.7M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/latin_PP-OCRv3_rec_train.tar) |
| arabic_PP-OCRv3_rec | ppocr/utils/dict/arabic_dict.txt | Lightweight model for arabic recognition | [arabic_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/rec_arabic_lite_train.yml) |9.6M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_train.tar) |
| arabic_PP-OCRv3_rec | ppocr/utils/dict/arabic_dict.txt | Lightweight model for arabic recognition | [arabic_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/arabic_PP-OCRv3_rec.yml) |9.6M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/arabic_PP-OCRv3_rec_train.tar) |
| cyrillic_PP-OCRv3_rec | ppocr/utils/dict/cyrillic_dict.txt | Lightweight model for cyrillic recognition | [cyrillic_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/cyrillic_PP-OCRv3_rec.yml) |9.6M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/cyrillic_PP-OCRv3_rec_train.tar) |
| devanagari_PP-OCRv3_rec | ppocr/utils/dict/devanagari_dict.txt | Lightweight model for devanagari recognition | [devanagari_PP-OCRv3_rec.yml](../../configs/rec/PP-OCRv3/multi_language/devanagari_PP-OCRv3_rec.yml) |9.9M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv3/multilingual/devanagari_PP-OCRv3_rec_train.tar) |
@@ -38,7 +38,7 @@ On the basis of PP-OCR, PP-OCRv2 is further optimized in five aspects. The detec
PP-OCRv3 upgraded the detection model and recognition model in 9 aspects based on PP-OCRv2:
- PP-OCRv3 detector upgrades the CML(Collaborative Mutual Learning) text detection strategy proposed in PP-OCRv2, and further optimizes the effect of teacher model and student model respectively. In the optimization of teacher model, a pan module with large receptive field named LK-PAN is proposed and the DML distillation strategy is adopted; In the optimization of student model, a FPN module with residual attention mechanism named RSE-FPN is proposed.
- PP-OCRv3 recognizer is optimized based on text recognition algorithm [SVTR](https://arxiv.org/abs/2205.00159). SVTR no longer adopts RNN by introducing transformers structure, which can mine the context information of text line image more effectively, so as to improve the ability of text recognition. PP-OCRv3 adopts lightweight text recognition network SVTR_LCNet, guided training of CTC loss by attention loss, data augmentation strategy TextConAug, better pre-trained model by self-supervised TextRotNet, UDML(Unified Deep Mutual Learning), and UIM (Unlabeled Images Mining) to accelerate the model and improve the effect.
- PP-OCRv3 recognizer is optimized based on text recognition algorithm [SVTR](https://arxiv.org/abs/2205.00159). SVTR no longer adopts RNN by introducing transformers structure, which can mine the context information of text line image more effectively, so as to improve the ability of text recognition. PP-OCRv3 adopts lightweight text recognition network SVTR_LCNet, guided training of CTC by attention, data augmentation strategy TextConAug, better pre-trained model by self-supervised TextRotNet, UDML(Unified Deep Mutual Learning), and UIM (Unlabeled Images Mining) to accelerate the model and improve the effect.
-[PP-OCRv3](./doc/doc_en/ppocr_introduction_en.md#pp-ocrv3): With comparable speed, the effect of Chinese scene is further improved by 5% compared with PP-OCRv2, the effect of English scene is improved by 11%, and the average recognition accuracy of 80 language multilingual models is improved by more than 5%.
-[PPOCRLabelv2](./PPOCRLabel): Add the annotation function for table recognition task, key information extraction task and irregular text image.
- Interactive e-book [*"Dive into OCR"*](./doc/doc_en/ocr_book_en.md), covers the cutting-edge theory and code practice of OCR full stack technology.
-[PP-OCRv3](./ppocr_introduction_en.md#pp-ocrv3): With comparable speed, the effect of Chinese scene is further improved by 5% compared with PP-OCRv2, the effect of English scene is improved by 11%, and the average recognition accuracy of 80 language multilingual models is improved by more than 5%.
-[PPOCRLabelv2](../../PPOCRLabel): Add the annotation function for table recognition task, key information extraction task and irregular text image.
- Interactive e-book [*"Dive into OCR"*](./ocr_book_en.md), covers the cutting-edge theory and code practice of OCR full stack technology.
- 2022.5.7 Add support for metric and model logging during training to [Weights & Biases](https://docs.wandb.ai/).
- 2021.12.21 OCR open source online course starts. The lesson starts at 8:30 every night and lasts for ten days. Free registration: https://aistudio.baidu.com/aistudio/course/introduce/25207
- 2021.12.21 release PaddleOCR v2.4, release 1 text detection algorithm (PSENet), 3 text recognition algorithms (NRTR、SEED、SAR), 1 key information extraction algorithm (SDMGR) and 3 DocVQA algorithms (LayoutLM、LayoutLMv2,LayoutXLM).