提交 c86c1740 编写于 作者: 文幕地方's avatar 文幕地方

remove unused code

上级 d5ea6f21
Global:
use_gpu: true
epoch_num: 400
epoch_num: 100
log_smooth_window: 20
print_batch_step: 20
save_model_dir: ./output/SLANet
......@@ -28,7 +28,10 @@ Optimizer:
beta2: 0.999
clip_norm: 5.0
lr:
name: Piecewise
learning_rate: 0.001
decay_epochs : [40, 50]
values : [0.001, 0.0001, 0.00005]
regularizer:
name: 'L2'
factor: 0.00000
......@@ -105,8 +108,8 @@ Train:
Eval:
dataset:
name: PubTabDataSet
data_dir: /home/zhoujun20/table/PubTabNe/pubtabnet/val/
label_file_list: [/home/zhoujun20/table/PubTabNe/pubtabnet/val_500.jsonl]
data_dir: train_data/table/pubtabnet/val/
label_file_list: [train_data/table/pubtabnet/PubTabNet_2.0.0_val.jsonl]
transforms:
- DecodeImage: # load image
img_mode: BGR
......
......@@ -40,169 +40,6 @@ def compute_iou(rec1, rec2):
return (intersect / (sum_area - intersect)) * 1.0
def matcher_merge(ocr_bboxes, pred_bboxes):
all_dis = []
ious = []
matched = {}
for i, gt_box in enumerate(ocr_bboxes):
distances = []
for j, pred_box in enumerate(pred_bboxes):
# compute l1 distence and IOU between two boxes
distances.append((distance(gt_box, pred_box),
1. - compute_iou(gt_box, pred_box)))
sorted_distances = distances.copy()
# select nearest cell
sorted_distances = sorted(
sorted_distances, key=lambda item: (item[1], item[0]))
if distances.index(sorted_distances[0]) not in matched.keys():
matched[distances.index(sorted_distances[0])] = [i]
else:
matched[distances.index(sorted_distances[0])].append(i)
return matched #, sum(ious) / len(ious)
def complex_num(pred_bboxes):
complex_nums = []
for bbox in pred_bboxes:
distances = []
temp_ious = []
for pred_bbox in pred_bboxes:
if bbox != pred_bbox:
distances.append(distance(bbox, pred_bbox))
temp_ious.append(compute_iou(bbox, pred_bbox))
complex_nums.append(temp_ious[distances.index(min(distances))])
return sum(complex_nums) / len(complex_nums)
def get_rows(pred_bboxes):
pre_bbox = pred_bboxes[0]
res = []
step = 0
for i in range(len(pred_bboxes)):
bbox = pred_bboxes[i]
if bbox[1] - pre_bbox[1] > 2 or bbox[0] - pre_bbox[0] < 0:
break
else:
res.append(bbox)
step += 1
for i in range(step):
pred_bboxes.pop(0)
return res, pred_bboxes
def refine_rows(pred_bboxes): # 微调整行的框,使在一条水平线上
ys_1 = []
ys_2 = []
for box in pred_bboxes:
ys_1.append(box[1])
ys_2.append(box[3])
min_y_1 = sum(ys_1) / len(ys_1)
min_y_2 = sum(ys_2) / len(ys_2)
re_boxes = []
for box in pred_bboxes:
box[1] = min_y_1
box[3] = min_y_2
re_boxes.append(box)
return re_boxes
def matcher_refine_row(gt_bboxes, pred_bboxes):
before_refine_pred_bboxes = pred_bboxes.copy()
pred_bboxes = []
while (len(before_refine_pred_bboxes) != 0):
row_bboxes, before_refine_pred_bboxes = get_rows(
before_refine_pred_bboxes)
print(row_bboxes)
pred_bboxes.extend(refine_rows(row_bboxes))
all_dis = []
ious = []
matched = {}
for i, gt_box in enumerate(gt_bboxes):
distances = []
#temp_ious = []
for j, pred_box in enumerate(pred_bboxes):
distances.append(distance(gt_box, pred_box))
#temp_ious.append(compute_iou(gt_box, pred_box))
#all_dis.append(min(distances))
#ious.append(temp_ious[distances.index(min(distances))])
if distances.index(min(distances)) not in matched.keys():
matched[distances.index(min(distances))] = [i]
else:
matched[distances.index(min(distances))].append(i)
return matched #, sum(ious) / len(ious)
#先挑选出一行,再进行匹配
def matcher_structure_1(gt_bboxes, pred_bboxes_rows, pred_bboxes):
gt_box_index = 0
delete_gt_bboxes = gt_bboxes.copy()
match_bboxes_ready = []
matched = {}
while (len(delete_gt_bboxes) != 0):
row_bboxes, delete_gt_bboxes = get_rows(delete_gt_bboxes)
row_bboxes = sorted(row_bboxes, key=lambda key: key[0])
if len(pred_bboxes_rows) > 0:
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
print(row_bboxes)
for i, gt_box in enumerate(row_bboxes):
#print(gt_box)
pred_distances = []
distances = []
for pred_bbox in pred_bboxes:
pred_distances.append(distance(gt_box, pred_bbox))
for j, pred_box in enumerate(match_bboxes_ready):
distances.append(distance(gt_box, pred_box))
index = pred_distances.index(min(distances))
#print('index', index)
if index not in matched.keys():
matched[index] = [gt_box_index]
else:
matched[index].append(gt_box_index)
gt_box_index += 1
return matched
def matcher_structure(gt_bboxes, pred_bboxes_rows, pred_bboxes):
'''
gt_bboxes: 排序后
pred_bboxes:
'''
pre_bbox = gt_bboxes[0]
matched = {}
match_bboxes_ready = []
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
for i, gt_box in enumerate(gt_bboxes):
pred_distances = []
for pred_bbox in pred_bboxes:
pred_distances.append(distance(gt_box, pred_bbox))
distances = []
gap_pre = gt_box[1] - pre_bbox[1]
gap_pre_1 = gt_box[0] - pre_bbox[2]
#print(gap_pre, len(pred_bboxes_rows))
if (gap_pre_1 < 0 and len(pred_bboxes_rows) > 0):
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
if len(pred_bboxes_rows) == 1:
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) > 0:
match_bboxes_ready.extend(pred_bboxes_rows.pop(0))
if len(match_bboxes_ready) == 0 and len(pred_bboxes_rows) == 0:
break
#print(match_bboxes_ready)
for j, pred_box in enumerate(match_bboxes_ready):
distances.append(distance(gt_box, pred_box))
index = pred_distances.index(min(distances))
#print(gt_box, index)
#match_bboxes_ready.pop(distances.index(min(distances)))
print(gt_box, match_bboxes_ready[distances.index(min(distances))])
if index not in matched.keys():
matched[index] = [i]
else:
matched[index].append(i)
pre_bbox = gt_box
return matched
class TableMatch:
def __init__(self, filter_ocr_result=False, use_master=False):
self.filter_ocr_result = filter_ocr_result
......@@ -225,14 +62,13 @@ class TableMatch:
def match_result(self, dt_boxes, pred_bboxes):
matched = {}
for i, gt_box in enumerate(dt_boxes):
# gt_box = [np.min(gt_box[:, 0]), np.min(gt_box[:, 1]), np.max(gt_box[:, 0]), np.max(gt_box[:, 1])]
distances = []
for j, pred_box in enumerate(pred_bboxes):
distances.append((distance(gt_box, pred_box),
1. - compute_iou(gt_box, pred_box)
)) # 获取两两cell之间的L1距离和 1- IOU
)) # compute iou and l1 distance
sorted_distances = distances.copy()
# 根据距离和IOU挑选最"近"的cell
# select det box by iou and l1 distance
sorted_distances = sorted(
sorted_distances, key=lambda item: (item[1], item[0]))
if distances.index(sorted_distances[0]) not in matched.keys():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册