未验证 提交 bfff01db 编写于 作者: U user1018 提交者: GitHub

Upstream/layout update (#7220)

* update layout

* update layout

* update layout

* update layout

* update layout
上级 a485740f
text
title
figure
figure_caption
table
table_caption
header
footer
reference
equation
\ No newline at end of file
text
title
list
table
figure
\ No newline at end of file
此差异已折叠。
[English](README.md) | 简体中文
# 版面分析使用说明
- [1. 安装whl包](#1)
- [2. 使用](#2)
- [3. 后处理](#3)
- [4. 指标](#4)
- [5. 训练版面分析模型](#5)
<a name="1"></a>
## 1. 安装whl包
```bash
pip install -U https://paddleocr.bj.bcebos.com/whl/layoutparser-0.0.0-py3-none-any.whl
```
<a name="2"></a>
## 2. 使用
使用layoutparser识别给定文档的布局:
```python
import cv2
import layoutparser as lp
image = cv2.imread("ppstructure/docs/table/layout.jpg")
image = image[..., ::-1]
# 加载模型
model = lp.PaddleDetectionLayoutModel(config_path="lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config",
threshold=0.5,
label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},
enforce_cpu=False,
enable_mkldnn=True)
# 检测
layout = model.detect(image)
# 显示结果
show_img = lp.draw_box(image, layout, box_width=3, show_element_type=True)
show_img.show()
```
下图展示了结果,不同颜色的检测框表示不同的类别,并通过`show_element_type`在框的左上角显示具体类别:
<div align="center">
<img src="../docs/table/result_all.jpg" width = "600" />
</div>
`PaddleDetectionLayoutModel`函数参数说明如下:
| 参数 | 含义 | 默认值 | 备注 |
| :------------: | :-------------------------: | :---------: | :----------------------------------------------------------: |
| config_path | 模型配置路径 | None | 指定config_path会自动下载模型(仅第一次,之后模型存在,不会再下载) |
| model_path | 模型路径 | None | 本地模型路径,config_path和model_path必须设置一个,不能同时为None |
| threshold | 预测得分的阈值 | 0.5 | \ |
| input_shape | reshape之后图片尺寸 | [3,640,640] | \ |
| batch_size | 测试batch size | 1 | \ |
| label_map | 类别映射表 | None | 设置config_path时,可以为None,根据数据集名称自动获取label_map,设置model_path时需要手动指定 |
| enforce_cpu | 代码是否使用CPU运行 | False | 设置为False表示使用GPU,True表示强制使用CPU |
| enforce_mkldnn | CPU预测中是否开启MKLDNN加速 | True | \ |
| thread_num | 设置CPU线程数 | 10 | \ |
目前支持以下几种模型配置和label map,您可以通过修改 `--config_path``--label_map`使用这些模型,从而检测不同类型的内容:
| dataset | config_path | label_map |
| ------------------------------------------------------------ | ------------------------------------------------------------ | --------------------------------------------------------- |
| [TableBank](https://doc-analysis.github.io/tablebank-page/index.html) word | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_word/config | {0:"Table"} |
| TableBank latex | lp://TableBank/ppyolov2_r50vd_dcn_365e_tableBank_latex/config | {0:"Table"} |
| [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) | lp://PubLayNet/ppyolov2_r50vd_dcn_365e_publaynet/config | {0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"} |
* TableBank word和TableBank latex分别在word文档、latex文档数据集训练;
* 下载的TableBank数据集里同时包含word和latex。
<a name="3"></a>
## 3. 后处理
版面分析检测包含多个类别,如果只想获取指定类别(如"Text"类别)的检测框、可以使用下述代码:
```python
# 接上面代码
# 首先过滤特定文本类型的区域
text_blocks = lp.Layout([b for b in layout if b.type=='Text'])
figure_blocks = lp.Layout([b for b in layout if b.type=='Figure'])
# 因为在图像区域内可能检测到文本区域,所以只需要删除它们
text_blocks = lp.Layout([b for b in text_blocks \
if not any(b.is_in(b_fig) for b_fig in figure_blocks)])
# 对文本区域排序并分配id
h, w = image.shape[:2]
left_interval = lp.Interval(0, w/2*1.05, axis='x').put_on_canvas(image)
left_blocks = text_blocks.filter_by(left_interval, center=True)
left_blocks.sort(key = lambda b:b.coordinates[1])
right_blocks = [b for b in text_blocks if b not in left_blocks]
right_blocks.sort(key = lambda b:b.coordinates[1])
# 最终合并两个列表,并按顺序添加索引
text_blocks = lp.Layout([b.set(id = idx) for idx, b in enumerate(left_blocks + right_blocks)])
# 显示结果
show_img = lp.draw_box(image, text_blocks,
box_width=3,
show_element_id=True)
show_img.show()
```
显示只有"Text"类别的结果:
<div align="center">
<img src="../docs/table/result_text.jpg" width = "600" />
</div>
<a name="4"></a>
## 4. 指标
| Dataset | mAP | CPU time cost | GPU time cost |
| --------- | ---- | ------------- | ------------- |
| PubLayNet | 93.6 | 1713.7ms | 66.6ms |
| TableBank | 96.2 | 1968.4ms | 65.1ms |
**Envrionment:**
**CPU:** Intel(R) Xeon(R) CPU E5-2650 v4 @ 2.20GHz,24core
**GPU:** a single NVIDIA Tesla P40
<a name="5"></a>
## 5. 训练版面分析模型
上述模型基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection) 训练,如果您想训练自己的版面分析模型,请参考:[train_layoutparser_model](train_layoutparser_model_ch.md)
- [1. 简介](#1-简介)
- [2. 安装](#2-安装)
- [2.1 安装PaddlePaddle](#21-安装paddlepaddle)
- [2.2 安装PaddleDetection](#22-安装paddledetection)
- [3. 数据准备](#3-数据准备)
- [3.1 英文数据集](#31-英文数据集)
- [3.2 更多数据集](#32-更多数据集)
- [4. 开始训练](#4-开始训练)
- [4.1 启动训练](#41-启动训练)
- [4.2 FGD蒸馏训练](#42-FGD蒸馏训练)
- [5. 模型评估与预测](#5-模型评估与预测)
- [5.1 指标评估](#51-指标评估)
- [5.2 测试版面分析结果](#52-测试版面分析结果)
- [6 模型导出与预测](#6-模型导出与预测)
- [6.1 模型导出](#61-模型导出)
- [6.2 模型推理](#62-模型推理)
# 版面分析
## 1. 简介
版面分析指的是对图片形式的文档进行区域划分,定位其中的关键区域,如文字、标题、表格、图片等。版面分析算法基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)的轻量模型PP-PicoDet进行开发。
<div align="center">
<img src="../docs/layout/layout.png" width="800">
</div>
## 2. 安装依赖
### 2.1. 安装PaddlePaddle
- **(1) 安装PaddlePaddle**
```bash
python3 -m pip install --upgrade pip
# GPU安装
python3 -m pip install "paddlepaddle-gpu>=2.2" -i https://mirror.baidu.com/pypi/simple
# CPU安装
python3 -m pip install "paddlepaddle>=2.2" -i https://mirror.baidu.com/pypi/simple
```
更多需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
### 2.2. 安装PaddleDetection
- **(1)下载PaddleDetection源码**
```bash
git clone https://github.com/PaddlePaddle/PaddleDetection.git
```
- **(2)安装其他依赖 **
```bash
cd PaddleDetection
python3 -m pip install -r requirements.txt
```
## 3. 数据准备
如果希望直接体验预测过程,可以跳过数据准备,下载我们提供的预训练模型。
### 3.1. 英文数据集
下载文档分析数据集[PubLayNet](https://developer.ibm.com/exchanges/data/all/publaynet/)(数据集96G),包含5个类:`{0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"}`
```
# 下载数据
wget https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz
# 解压数据
tar -xvf publaynet.tar.gz
```
解压之后的**目录结构:**
```
|-publaynet
|- test
|- PMC1277013_00004.jpg
|- PMC1291385_00002.jpg
| ...
|- train.json
|- train
|- PMC1291385_00002.jpg
|- PMC1277013_00004.jpg
| ...
|- val.json
|- val
|- PMC538274_00004.jpg
|- PMC539300_00004.jpg
| ...
```
**数据分布:**
| File or Folder | Description | num |
| :------------- | :------------- | ------- |
| `train/` | 训练集图片 | 335,703 |
| `val/` | 验证集图片 | 11,245 |
| `test/` | 测试集图片 | 11,405 |
| `train.json` | 训练集标注文件 | - |
| `val.json` | 验证集标注文件 | - |
**标注格式:**
json文件包含所有图像的标注,数据以字典嵌套的方式存放,包含以下key:
- info,表示标注文件info。
- licenses,表示标注文件licenses。
- images,表示标注文件中图像信息列表,每个元素是一张图像的信息。如下为其中一张图像的信息:
```
{
'file_name': 'PMC4055390_00006.jpg', # file_name
'height': 601, # image height
'width': 792, # image width
'id': 341427 # image id
}
```
- annotations,表示标注文件中目标物体的标注信息列表,每个元素是一个目标物体的标注信息。如下为其中一个目标物体的标注信息:
```
{
'segmentation': # 物体的分割标注
'area': 60518.099043117836, # 物体的区域面积
'iscrowd': 0, # iscrowd
'image_id': 341427, # image id
'bbox': [50.58, 490.86, 240.15, 252.16], # bbox [x1,y1,w,h]
'category_id': 1, # category_id
'id': 3322348 # image id
}
```
### 3.2. 更多数据集
我们提供了CDLA(中文版面分析)、TableBank(表格版面分析)等数据集的下连接,处理为上述标注文件json格式,即可以按相同方式进行训练。
| dataset | 简介 |
| ------------------------------------------------------------ | ------------------------------------------------------------ |
| [cTDaR2019_cTDaR](https://cndplab-founder.github.io/cTDaR2019/) | 用于表格检测(TRACKA)和表格识别(TRACKB)。图片类型包含历史数据集(以cTDaR_t0开头,如cTDaR_t00872.jpg)和现代数据集(以cTDaR_t1开头,cTDaR_t10482.jpg)。 |
| [IIIT-AR-13K](http://cvit.iiit.ac.in/usodi/iiitar13k.php) | 手动注释公开的年度报告中的图形或页面而构建的数据集,包含5类:table, figure, natural image, logo, and signature |
| [CDLA](https://github.com/buptlihang/CDLA) | 中文文档版面分析数据集,面向中文文献类(论文)场景,包含10类:Table、Figure、Figure caption、Table、Table caption、Header、Footer、Reference、Equation |
| [TableBank](https://github.com/doc-analysis/TableBank) | 用于表格检测和识别大型数据集,包含Word和Latex2种文档格式 |
| [DocBank](https://github.com/doc-analysis/DocBank) | 使用弱监督方法构建的大规模数据集(500K文档页面),用于文档布局分析,包含12类:Author、Caption、Date、Equation、Figure、Footer、List、Paragraph、Reference、Section、Table、Title |
## 4. 开始训练
提供了训练脚本、评估脚本和预测脚本,本节将以PubLayNet预训练模型为例进行讲解。
如果不希望训练,直接体验后面的模型评估、预测、动转静、推理的流程,可以下载提供的预训练模型,并跳过本部分。
```
mkdir pretrained_model
cd pretrained_model
# 下载并解压PubLayNet预训练模型
wget https://paddleocr.bj.bcebos.com/ppstructure/models/layout/picodet_lcnet_x1_0_layout.pdparams
```
### 4.1. 启动训练
开始训练:
* 修改配置文件
如果你希望训练自己的数据集,需要修改配置文件中的数据配置、类别数。
`configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml` 为例,修改的内容如下所示。
```yaml
metric: COCO
# 类别数
num_classes: 5
TrainDataset:
!COCODataSet
# 修改为你自己的训练数据目录
image_dir: train
# 修改为你自己的训练数据标签文件
anno_path: train.json
# 修改为你自己的训练数据根目录
dataset_dir: /root/publaynet/
data_fields: ['image', 'gt_bbox', 'gt_class', 'is_crowd']
EvalDataset:
!COCODataSet
# 修改为你自己的验证数据目录
image_dir: val
# 修改为你自己的验证数据标签文件
anno_path: val.json
# 修改为你自己的验证数据根目录
dataset_dir: /root/publaynet/
TestDataset:
!ImageFolder
# 修改为你自己的测试数据标签文件
anno_path: /root/publaynet/val.json
```
* 开始训练,在训练时,会默认下载PP-PicoDet预训练模型,这里无需预先下载。
```bash
# GPU训练 支持单卡,多卡训练
# 训练日志会自动保存到 log 目录中
# 单卡训练
python3 tools/train.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
--eval
# 多卡训练,通过--gpus参数指定卡号
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
--eval
```
正常启动训练后,会看到以下log输出:
```
[08/15 04:02:30] ppdet.utils.checkpoint INFO: Finish loading model weights: /root/.cache/paddle/weights/LCNet_x1_0_pretrained.pdparams
[08/15 04:02:46] ppdet.engine INFO: Epoch: [0] [ 0/1929] learning_rate: 0.040000 loss_vfl: 1.216707 loss_bbox: 1.142163 loss_dfl: 0.544196 loss: 2.903065 eta: 17 days, 13:50:26 batch_cost: 15.7452 data_cost: 2.9112 ips: 1.5243 images/s
[08/15 04:03:19] ppdet.engine INFO: Epoch: [0] [ 20/1929] learning_rate: 0.064000 loss_vfl: 1.180627 loss_bbox: 0.939552 loss_dfl: 0.442436 loss: 2.628206 eta: 2 days, 12:18:53 batch_cost: 1.5770 data_cost: 0.0008 ips: 15.2184 images/s
[08/15 04:03:47] ppdet.engine INFO: Epoch: [0] [ 40/1929] learning_rate: 0.088000 loss_vfl: 0.543321 loss_bbox: 1.071401 loss_dfl: 0.457817 loss: 2.057003 eta: 2 days, 0:07:03 batch_cost: 1.3190 data_cost: 0.0007 ips: 18.1954 images/s
[08/15 04:04:12] ppdet.engine INFO: Epoch: [0] [ 60/1929] learning_rate: 0.112000 loss_vfl: 0.630989 loss_bbox: 0.859183 loss_dfl: 0.384702 loss: 1.883143 eta: 1 day, 19:01:29 batch_cost: 1.2177 data_cost: 0.0006 ips: 19.7087 images/s
```
- `--eval`表示训练的同时,进行评估, 评估过程中默认将最佳模型,保存为 `output/picodet_lcnet_x1_0_layout/best_accuracy`
**注意,预测/评估时的配置文件请务必与训练一致。**
### 4.2. FGD蒸馏训练
PaddleDetection支持了基于FGD([Focal and Global Knowledge Distillation for Detectors](https://arxiv.org/abs/2111.11837v1))蒸馏的目标检测模型训练过程,FGD蒸馏分为两个部分`Focal``Global``Focal`蒸馏分离图像的前景和背景,让学生模型分别关注教师模型的前景和背景部分特征的关键像素;`Global`蒸馏部分重建不同像素之间的关系并将其从教师转移到学生,以补偿`Focal`蒸馏中丢失的全局信息。
更换数据集,修改【TODO】配置中的数据配置、类别数,具体可以参考4.1。启动训练:
```bash
python3 -m paddle.distributed.launch --gpus '0,1,2,3' tools/train.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
--slim_config configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x2_5_layout.yml \
--eval
```
- `-c`: 指定模型配置文件。
- `--slim_config`: 指定压缩策略配置文件。
## 5. 模型评估与预测
### 5.1. 指标评估
训练中模型参数默认保存在`output/picodet_lcnet_x1_0_layout`目录下。在评估指标时,需要设置`weights`指向保存的参数文件。评估数据集可以通过 `configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml` 修改`EvalDataset`中的 `image_dir``anno_path``dataset_dir` 设置。
```bash
# GPU 评估, weights 为待测权重
python3 tools/eval.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
-o weigths=./output/picodet_lcnet_x1_0_layout/best_model
```
会输出以下信息,打印出mAP、AP0.5等信息。
```py
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.935
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.979
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.956
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.404
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.782
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.969
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.539
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.938
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.949
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.495
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.818
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.978
[08/15 07:07:09] ppdet.engine INFO: Total sample number: 11245, averge FPS: 24.405059207157436
[08/15 07:07:09] ppdet.engine INFO: Best test bbox ap is 0.935.
```
使用FGD蒸馏模型进行评估:
```
python3 tools/eval.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
--slim_config configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x2_5_layout.yml \
-o weights=output/picodet_lcnet_x2_5_layout/best_model
```
- `-c`: 指定模型配置文件。
- `--slim_config`: 指定蒸馏策略配置文件。
- `-o weights`: 指定蒸馏算法训好的模型路径。
### 5.2. 测试版面分析结果
预测使用的配置文件必须与训练一致,如您通过 `python3 tools/train.py -c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml` 完成了模型的训练过程。
使用 PaddleDetection 训练好的模型,您可以使用如下命令进行中文模型预测。
```bash
python3 tools/infer.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
-o weights='output/picodet_lcnet_x1_0_layout/best_model.pdparams' \
--infer_img='docs/images/layout.jpg' \
--output_dir=output_dir/ \
--draw_threshold=0.4
```
- `--infer_img`: 推理单张图片,也可以通过`--infer_dir`推理文件中的所有图片。
- `--output_dir`: 指定可视化结果保存路径。
- `--draw_threshold`:指定绘制结果框的NMS阈值。
预测图片如下所示,图片会存储在`output_dir`路径中。
使用FGD蒸馏模型进行测试:
```
python3 tools/infer.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
--slim_config configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x2_5_layout.yml \
-o weights='output/picodet_lcnet_x2_5_layout/best_model.pdparams' \
--infer_img='docs/images/layout.jpg' \
--output_dir=output_dir/ \
--draw_threshold=0.4
```
## 6. 模型导出与预测
### 6.1 模型导出
inference 模型(`paddle.jit.save`保存的模型) 一般是模型训练,把模型结构和模型参数保存在文件中的固化模型,多用于预测部署场景。 训练过程中保存的模型是checkpoints模型,保存的只有模型的参数,多用于恢复训练等。 与checkpoints模型相比,inference 模型会额外保存模型的结构信息,在预测部署、加速推理上性能优越,灵活方便,适合于实际系统集成。
版面分析模型转inference模型步骤如下:
```bash
python3 tools/export_model.py \
-c configs/picodet/legacy_model/application/layout_detection/picodet_lcnet_x1_0_layout.yml \
-o weights=output/picodet_lcnet_x1_0_layout/best_model \
--output_dir=output_inference/
```
* 如无需导出后处理,请指定:`-o export.benchmark=True`(如果-o已出现过,此处删掉-o)
* 如无需导出NMS,请指定:`-o export.nms=False`
转换成功后,在目录下有三个文件:
```
output_inference/picodet_lcnet_x1_0_layout/
├── model.pdiparams # inference模型的参数文件
├── model.pdiparams.info # inference模型的参数信息,可忽略
└── model.pdmodel # inference模型的模型结构文件
```
FGD蒸馏模型转inference模型步骤如下:
```bash
python3 tools/export_model.py \
-c configs/picodet/legacy_model/application/publayernet_lcnet_x1_5/picodet_student.yml \
--slim_config configs/picodet/legacy_model/application/publayernet_lcnet_x1_5/picodet_teacher.yml \
-o weights=./output/picodet_lcnet_x2_5_layout/best_model \
--output_dir=output_inference/
```
### 6.2 模型推理
版面恢复任务进行推理,可以执行如下命令:
```bash
python3 deploy/python/infer.py \
--model_dir=output_inference/picodet_lcnet_x1_0_layout/ \
--image_file=docs/images/layout.jpg \
--device=CPU
```
- --device:指定GPU、CPU设备
模型推理完成,会看到以下log输出
```
------------------------------------------
----------- Model Configuration -----------
Model Arch: PicoDet
Transform Order:
--transform op: Resize
--transform op: NormalizeImage
--transform op: Permute
--transform op: PadStride
--------------------------------------------
class_id:0, confidence:0.9921, left_top:[20.18,35.66],right_bottom:[341.58,600.99]
class_id:0, confidence:0.9914, left_top:[19.77,611.42],right_bottom:[341.48,901.82]
class_id:0, confidence:0.9904, left_top:[369.36,375.10],right_bottom:[691.29,600.59]
class_id:0, confidence:0.9835, left_top:[369.60,608.60],right_bottom:[691.38,736.72]
class_id:0, confidence:0.9830, left_top:[369.58,805.38],right_bottom:[690.97,901.80]
class_id:0, confidence:0.9716, left_top:[383.68,271.44],right_bottom:[688.93,335.39]
class_id:0, confidence:0.9452, left_top:[370.82,34.48],right_bottom:[688.10,63.54]
class_id:1, confidence:0.8712, left_top:[370.84,771.03],right_bottom:[519.30,789.13]
class_id:3, confidence:0.9856, left_top:[371.28,67.85],right_bottom:[685.73,267.72]
save result to: output/layout.jpg
Test iter 0
------------------ Inference Time Info ----------------------
total_time(ms): 2196.0, img_num: 1
average latency time(ms): 2196.00, QPS: 0.455373
preprocess_time(ms): 2172.50, inference_time(ms): 11.90, postprocess_time(ms): 11.60
```
- Model:模型结构
- Transform Order:预处理操作
- class_id、confidence、left_top、right_bottom:分别表示类别id、置信度、左上角坐标、右下角坐标
- save result to:可视化版面分析结果保存路径,默认保存到`./output`文件夹
- Inference Time Info:推理时间,其中preprocess_time表示预处理耗时,inference_time表示模型预测耗时,postprocess_time表示后处理耗时
可视化版面结果如下图所示
<div align="center">
<img src="../docs/layout/layout_res.jpg" width="800">
</div>
## Citations
```
@inproceedings{zhong2019publaynet,
title={PubLayNet: largest dataset ever for document layout analysis},
author={Zhong, Xu and Tang, Jianbin and Yepes, Antonio Jimeno},
booktitle={2019 International Conference on Document Analysis and Recognition (ICDAR)},
year={2019},
volume={},
number={},
pages={1015-1022},
doi={10.1109/ICDAR.2019.00166},
ISSN={1520-5363},
month={Sep.},
organization={IEEE}
}
@inproceedings{yang2022focal,
title={Focal and global knowledge distillation for detectors},
author={Yang, Zhendong and Li, Zhe and Jiang, Xiaohu and Gong, Yuan and Yuan, Zehuan and Zhao, Danpei and Yuan, Chun},
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
pages={4643--4652},
year={2022}
}
```
English | [简体中文](train_layoutparser_model_ch.md)
- [Training layout-parse](#training-layout-parse)
- [1. Installation](#1--installation)
- [1.1 Requirements](#11-requirements)
- [1.2 Install PaddleDetection](#12-install-paddledetection)
- [2. Data preparation](#2-data-preparation)
- [3. Configuration](#3-configuration)
- [4. Training](#4-training)
- [5. Prediction](#5-prediction)
- [6. Deployment](#6-deployment)
- [6.1 Export model](#61-export-model)
- [6.2 Inference](#62-inference)
# Training layout-parse
## 1. Installation
### 1.1 Requirements
- PaddlePaddle 2.1
- OS 64 bit
- Python 3(3.5.1+/3.6/3.7/3.8/3.9),64 bit
- pip/pip3(9.0.1+), 64 bit
- CUDA >= 10.1
- cuDNN >= 7.6
### 1.2 Install PaddleDetection
```bash
# Clone PaddleDetection repository
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection
# Install other dependencies
pip install -r requirements.txt
```
For more installation tutorials, please refer to: [Install doc](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md)
## 2. Data preparation
Download the [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) dataset
```bash
cd PaddleDetection/dataset/
mkdir publaynet
# execute the command,download PubLayNet
wget -O publaynet.tar.gz https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz?_ga=2.104193024.1076900768.1622560733-649911202.1622560733
# unpack
tar -xvf publaynet.tar.gz
```
PubLayNet directory structure after decompressing :
| File or Folder | Description | num |
| :------------- | :----------------------------------------------- | ------- |
| `train/` | Images in the training subset | 335,703 |
| `val/` | Images in the validation subset | 11,245 |
| `test/` | Images in the testing subset | 11,405 |
| `train.json` | Annotations for training images | 1 |
| `val.json` | Annotations for validation images | 1 |
| `LICENSE.txt` | Plaintext version of the CDLA-Permissive license | 1 |
| `README.txt` | Text file with the file names and description | 1 |
For other datasets,please refer to [the PrepareDataSet]((https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/PrepareDataSet.md) )
## 3. Configuration
We use the `configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml` configuration for training,the configuration file is as follows
```bash
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'./_base_/ppyolov2_r50vd_dcn.yml',
'./_base_/optimizer_365e.yml',
'./_base_/ppyolov2_reader.yml',
]
snapshot_epoch: 8
weights: output/ppyolov2_r50vd_dcn_365e_coco/model_final
```
The `ppyolov2_r50vd_dcn_365e_coco.yml` configuration depends on other configuration files, in this case:
- coco_detection.yml:mainly explains the path of training data and verification data
- runtime.yml:mainly describes the common parameters, such as whether to use the GPU and how many epoch to save model etc.
- optimizer_365e.yml:mainly explains the learning rate and optimizer configuration
- ppyolov2_r50vd_dcn.yml:mainly describes the model and the network
- ppyolov2_reader.yml:mainly describes the configuration of data readers, such as batch size and number of concurrent loading child processes, and also includes post preprocessing, such as resize and data augmention etc.
Modify the preceding files, such as the dataset path and batch size etc.
## 4. Training
PaddleDetection provides single-card/multi-card training mode to meet various training needs of users:
* GPU single card training
```bash
export CUDA_VISIBLE_DEVICES=0 #Don't need to run this command on Windows and Mac
python tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
```
* GPU multi-card training
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval
```
--eval: training while verifying
* Model recovery training
During the daily training, if training is interrupted due to some reasons, you can use the -r command to resume the training:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval -r output/ppyolov2_r50vd_dcn_365e_coco/10000
```
Note: If you encounter "`Out of memory error`" , try reducing `batch_size` in the `ppyolov2_reader.yml` file
## 5. Prediction
Set parameters and use PaddleDetection to predict:
```bash
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer_img=images/paper-image.jpg --output_dir=infer_output/ --draw_threshold=0.5 -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final --use_vdl=Ture
```
`--draw_threshold` is an optional parameter. According to the calculation of [NMS](https://ieeexplore.ieee.org/document/1699659), different threshold will produce different results, ` keep_top_k ` represent the maximum amount of output target, the default value is 10. You can set different value according to your own actual situation。
## 6. Deployment
Use your trained model in Layout Parser
### 6.1 Export model
n the process of model training, the model file saved contains the process of forward prediction and back propagation. In the actual industrial deployment, there is no need for back propagation. Therefore, the model should be translated into the model format required by the deployment. The `tools/export_model.py` script is provided in PaddleDetection to export the model.
The exported model name defaults to `model.*`, Layout Parser's code model is `inference.*`, So change [PaddleDetection/ppdet/engine/trainer. Py ](https://github.com/PaddlePaddle/PaddleDetection/blob/b87a1ea86fa18ce69e44a17ad1b49c1326f19ff9/ppdet/engine/trainer.py# L512) (click on the link to see the detailed line of code), change 'model' to 'inference'.
Execute the script to export model:
```bash
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --output_dir=./inference -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final.pdparams
```
The prediction model is exported to `inference/ppyolov2_r50vd_dcn_365e_coco` ,including:`infer_cfg.yml`(prediction not required), `inference.pdiparams`, `inference.pdiparams.info`,`inference.pdmodel`
More model export tutorials, please refer to:[EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md)
### 6.2 Inference
`model_path` represent the trained model path, and layoutparser is used to predict:
```bash
import layoutparser as lp
model = lp.PaddleDetectionLayoutModel(model_path="inference/ppyolov2_r50vd_dcn_365e_coco", threshold=0.5,label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},enforce_cpu=True,enable_mkldnn=True)
```
***
More PaddleDetection training tutorials,please reference:[PaddleDetection Training](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/GETTING_STARTED_cn.md)
***
[English](train_layoutparser_model.md) | 简体中文
- [训练版面分析](#训练版面分析)
- [1. 安装](#1-安装)
- [1.1 环境要求](#11-环境要求)
- [1.2 安装PaddleDetection](#12-安装paddledetection)
- [2. 准备数据](#2-准备数据)
- [3. 配置文件改动和说明](#3-配置文件改动和说明)
- [4. PaddleDetection训练](#4-paddledetection训练)
- [5. PaddleDetection预测](#5-paddledetection预测)
- [6. 预测部署](#6-预测部署)
- [6.1 模型导出](#61-模型导出)
- [6.2 layout_parser预测](#62-layout_parser预测)
# 训练版面分析
## 1. 安装
### 1.1 环境要求
- PaddlePaddle 2.1
- OS 64 bit
- Python 3(3.5.1+/3.6/3.7/3.8/3.9),64 bit
- pip/pip3(9.0.1+), 64 bit
- CUDA >= 10.1
- cuDNN >= 7.6
### 1.2 安装PaddleDetection
```bash
# 克隆PaddleDetection仓库
cd <path/to/clone/PaddleDetection>
git clone https://github.com/PaddlePaddle/PaddleDetection.git
cd PaddleDetection
# 安装其他依赖
pip install -r requirements.txt
```
更多安装教程,请参考: [Install doc](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/INSTALL_cn.md)
## 2. 准备数据
下载 [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) 数据集:
```bash
cd PaddleDetection/dataset/
mkdir publaynet
# 执行命令,下载
wget -O publaynet.tar.gz https://dax-cdn.cdn.appdomain.cloud/dax-publaynet/1.0.0/publaynet.tar.gz?_ga=2.104193024.1076900768.1622560733-649911202.1622560733
# 解压
tar -xvf publaynet.tar.gz
```
解压之后PubLayNet目录结构:
| File or Folder | Description | num |
| :------------- | :----------------------------------------------- | ------- |
| `train/` | Images in the training subset | 335,703 |
| `val/` | Images in the validation subset | 11,245 |
| `test/` | Images in the testing subset | 11,405 |
| `train.json` | Annotations for training images | 1 |
| `val.json` | Annotations for validation images | 1 |
| `LICENSE.txt` | Plaintext version of the CDLA-Permissive license | 1 |
| `README.txt` | Text file with the file names and description | 1 |
如果使用其它数据集,请参考[准备训练数据](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/PrepareDataSet.md)
## 3. 配置文件改动和说明
我们使用 `configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml`配置进行训练,配置文件摘要如下:
```bash
_BASE_: [
'../datasets/coco_detection.yml',
'../runtime.yml',
'./_base_/ppyolov2_r50vd_dcn.yml',
'./_base_/optimizer_365e.yml',
'./_base_/ppyolov2_reader.yml',
]
snapshot_epoch: 8
weights: output/ppyolov2_r50vd_dcn_365e_coco/model_final
```
从中可以看到 `ppyolov2_r50vd_dcn_365e_coco.yml` 配置需要依赖其他的配置文件,在该例子中需要依赖:
- coco_detection.yml:主要说明了训练数据和验证数据的路径
- runtime.yml:主要说明了公共的运行参数,比如是否使用GPU、每多少个epoch存储checkpoint等
- optimizer_365e.yml:主要说明了学习率和优化器的配置
- ppyolov2_r50vd_dcn.yml:主要说明模型和主干网络的情况
- ppyolov2_reader.yml:主要说明数据读取器配置,如batch size,并发加载子进程数等,同时包含读取后预处理操作,如resize、数据增强等等
根据实际情况,修改上述文件,比如数据集路径、batch size等。
## 4. PaddleDetection训练
PaddleDetection提供了单卡/多卡训练模式,满足用户多种训练需求
* GPU 单卡训练
```bash
export CUDA_VISIBLE_DEVICES=0 #windows和Mac下不需要执行该命令
python tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml
```
* GPU多卡训练
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval
```
--eval:表示边训练边验证
* 模型恢复训练
在日常训练过程中,有的用户由于一些原因导致训练中断,用户可以使用-r的命令恢复训练:
```bash
export CUDA_VISIBLE_DEVICES=0,1,2,3
python -m paddle.distributed.launch --gpus 0,1,2,3 tools/train.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --eval -r output/ppyolov2_r50vd_dcn_365e_coco/10000
```
注意:如果遇到 "`Out of memory error`" 问题, 尝试在 `ppyolov2_reader.yml` 文件中调小`batch_size`
## 5. PaddleDetection预测
设置参数,使用PaddleDetection预测:
```bash
export CUDA_VISIBLE_DEVICES=0
python tools/infer.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --infer_img=images/paper-image.jpg --output_dir=infer_output/ --draw_threshold=0.5 -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final --use_vdl=Ture
```
`--draw_threshold` 是个可选参数. 根据 [NMS](https://ieeexplore.ieee.org/document/1699659) 的计算,不同阈值会产生不同的结果 `keep_top_k`表示设置输出目标的最大数量,默认值为100,用户可以根据自己的实际情况进行设定。
## 6. 预测部署
在layout parser中使用自己训练好的模型。
### 6.1 模型导出
在模型训练过程中保存的模型文件是包含前向预测和反向传播的过程,在实际的工业部署则不需要反向传播,因此需要将模型进行导成部署需要的模型格式。 在PaddleDetection中提供了 `tools/export_model.py`脚本来导出模型。
导出模型名称默认是`model.*`,layout parser代码模型名称是`inference.*`, 所以修改[PaddleDetection/ppdet/engine/trainer.py ](https://github.com/PaddlePaddle/PaddleDetection/blob/b87a1ea86fa18ce69e44a17ad1b49c1326f19ff9/ppdet/engine/trainer.py#L512) (点开链接查看详细代码行),将`model`改为`inference`即可。
执行导出模型脚本:
```bash
python tools/export_model.py -c configs/ppyolo/ppyolov2_r50vd_dcn_365e_coco.yml --output_dir=./inference -o weights=output/ppyolov2_r50vd_dcn_365e_coco/model_final.pdparams
```
预测模型会导出到`inference/ppyolov2_r50vd_dcn_365e_coco`目录下,分别为`infer_cfg.yml`(预测不需要), `inference.pdiparams`, `inference.pdiparams.info`,`inference.pdmodel`
更多模型导出教程,请参考:[EXPORT_MODEL](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/deploy/EXPORT_MODEL.md)
### 6.2 layout_parser预测
`model_path`指定训练好的模型路径,使用layout parser进行预测:
```bash
import layoutparser as lp
model = lp.PaddleDetectionLayoutModel(model_path="inference/ppyolov2_r50vd_dcn_365e_coco", threshold=0.5,label_map={0: "Text", 1: "Title", 2: "List", 3:"Table", 4:"Figure"},enforce_cpu=True,enable_mkldnn=True)
```
***
更多PaddleDetection训练教程,请参考:[PaddleDetection训练](https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.1/docs/tutorials/GETTING_STARTED_cn.md)
***
......@@ -38,7 +38,7 @@ def init_args():
parser.add_argument(
"--layout_dict_path",
type=str,
default="../ppocr/utils/dict/layout_publaynet_dict.txt")
default="../ppocr/utils/dict/layout_dict/layout_pubalynet_dict.txt")
parser.add_argument(
"--layout_score_threshold",
type=float,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册