提交 b55b8eda 编写于 作者: T tink2123

add windows doc

上级 8d9324ca
...@@ -36,6 +36,8 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力 ...@@ -36,6 +36,8 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
#### 2.inference模型下载 #### 2.inference模型下载
*windows 环境下没有如果没有安装wget,下载模型时可将链接复制到浏览器中下载,并解压放置在相应目录下*
#### (1)超轻量级中文OCR模型下载 #### (1)超轻量级中文OCR模型下载
``` ```
mkdir inference && cd inference mkdir inference && cd inference
...@@ -63,6 +65,9 @@ cd .. ...@@ -63,6 +65,9 @@ cd ..
# 设置PYTHONPATH环境变量 # 设置PYTHONPATH环境变量
export PYTHONPATH=. export PYTHONPATH=.
# windows下设置环境变量
SET PYTHONPATH=.
# 预测image_dir指定的单张图像 # 预测image_dir指定的单张图像
python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/" python3 tools/infer/predict_system.py --image_dir="./doc/imgs/11.jpg" --det_model_dir="./inference/ch_det_mv3_db/" --rec_model_dir="./inference/ch_rec_mv3_crnn/"
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 320] image_shape: [3, 32, 320]
max_text_length: 25 max_text_length: 25
character_type: ch character_type: ch
......
...@@ -9,13 +9,12 @@ Global: ...@@ -9,13 +9,12 @@ Global:
eval_batch_step: 500 eval_batch_step: 500
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
loss_type: ctc loss_type: ctc
reader_yml: ./configs/rec/rec_icdar15_reader.yml reader_yml: ./configs/rec/rec_icdar15_reader.yml
pretrain_weights: pretrain_weights: ./pretrain_models/rec_mv3_none_bilstm_ctc/best_accuracy
checkpoints: checkpoints:
save_inference_dir: save_inference_dir:
infer_img: infer_img:
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -9,7 +9,6 @@ Global: ...@@ -9,7 +9,6 @@ Global:
eval_batch_step: 2000 eval_batch_step: 2000
train_batch_size_per_card: 256 train_batch_size_per_card: 256
test_batch_size_per_card: 256 test_batch_size_per_card: 256
drop_last: false
image_shape: [3, 32, 100] image_shape: [3, 32, 100]
max_text_length: 25 max_text_length: 25
character_type: en character_type: en
......
...@@ -166,6 +166,10 @@ STAR-Net文本识别模型推理,可以执行如下命令: ...@@ -166,6 +166,10 @@ STAR-Net文本识别模型推理,可以执行如下命令:
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/starnet/" --rec_image_shape="3, 32, 100" --rec_char_type="en"
``` ```
### 3.基于Attention损失的识别模型推理
基于Attention损失的识别模型与ctc不同,需要额外设置识别算法参数 --rec_algorithm="RARE"
RARE 文本识别模型推理,可以执行如下命令: RARE 文本识别模型推理,可以执行如下命令:
``` ```
python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/sare/" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_algorithm="RARE" python3 tools/infer/predict_rec.py --image_dir="./doc/imgs_words_en/word_336.png" --rec_model_dir="./inference/sare/" --rec_image_shape="3, 32, 100" --rec_char_type="en" --rec_algorithm="RARE"
......
...@@ -8,6 +8,8 @@ PaddleOCR 工作环境 ...@@ -8,6 +8,8 @@ PaddleOCR 工作环境
建议使用我们提供的docker运行PaddleOCR,有关docker使用请参考[链接](https://docs.docker.com/get-started/) 建议使用我们提供的docker运行PaddleOCR,有关docker使用请参考[链接](https://docs.docker.com/get-started/)
*如您希望使用 mac 或 windows直接运行预测代码,可以从第2步开始执行。*
1. (建议)准备docker环境。第一次使用这个镜像,会自动下载该镜像,请耐心等待。 1. (建议)准备docker环境。第一次使用这个镜像,会自动下载该镜像,请耐心等待。
``` ```
# 切换到工作目录下 # 切换到工作目录下
...@@ -54,6 +56,10 @@ python3 -m pip install paddlepaddle-gpu==1.7.2.post97 -i https://pypi.tuna.tsing ...@@ -54,6 +56,10 @@ python3 -m pip install paddlepaddle-gpu==1.7.2.post97 -i https://pypi.tuna.tsing
如果您的机器安装的是CUDA10,请运行以下命令安装 如果您的机器安装的是CUDA10,请运行以下命令安装
python3 -m pip install paddlepaddle-gpu==1.7.2.post107 -i https://pypi.tuna.tsinghua.edu.cn/simple python3 -m pip install paddlepaddle-gpu==1.7.2.post107 -i https://pypi.tuna.tsinghua.edu.cn/simple
如果您的机器是CPU,请运行以下命令安装
python3 -m pip install paddlepaddle==1.7.2 -i https://pypi.tuna.tsinghua.edu.cn/simple
更多的版本需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。 更多的版本需求,请参照[安装文档](https://www.paddlepaddle.org.cn/install/quick)中的说明进行操作。
``` ```
......
...@@ -41,6 +41,8 @@ PaddleOCR 提供了一份用于训练 icdar2015 数据集的标签文件,通 ...@@ -41,6 +41,8 @@ PaddleOCR 提供了一份用于训练 icdar2015 数据集的标签文件,通
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_train.txt
# 测试集标签 # 测试集标签
wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt wget -P ./train_data/ic15_data https://paddleocr.bj.bcebos.com/dataset/rec_gt_test.txt
``` ```
最终训练集应有如下文件结构: 最终训练集应有如下文件结构:
...@@ -168,10 +170,11 @@ Global: ...@@ -168,10 +170,11 @@ Global:
评估数据集可以通过 `configs/rec/rec_icdar15_reader.yml` 修改EvalReader中的 `label_file_path` 设置。 评估数据集可以通过 `configs/rec/rec_icdar15_reader.yml` 修改EvalReader中的 `label_file_path` 设置。
*注意* 评估时必须确保配置文件中 infer_img 字段为空
``` ```
export CUDA_VISIBLE_DEVICES=0 export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.checkpoints 为待测权重 # GPU 评估, Global.checkpoints 为待测权重
python3 tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy python3 tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
``` ```
### 预测 ### 预测
...@@ -184,7 +187,7 @@ python3 tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkp ...@@ -184,7 +187,7 @@ python3 tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkp
``` ```
# 预测英文结果 # 预测英文结果
python3 tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png python3 tools/infer_rec.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy Global.infer_img=doc/imgs_words/en/word_1.png
``` ```
预测图片: 预测图片:
......
...@@ -42,14 +42,15 @@ class LMDBReader(object): ...@@ -42,14 +42,15 @@ class LMDBReader(object):
self.max_text_length = params['max_text_length'] self.max_text_length = params['max_text_length']
self.mode = params['mode'] self.mode = params['mode']
self.drop_last = False self.drop_last = False
self.tps = False self.use_tps = False
if "tps" in params: if "tps" in params:
self.tps = True self.ues_tps = True
if params['mode'] == 'train': if params['mode'] == 'train':
self.batch_size = params['train_batch_size_per_card'] self.batch_size = params['train_batch_size_per_card']
self.drop_last = params['drop_last'] self.drop_last = True
else: else:
self.batch_size = params['test_batch_size_per_card'] self.batch_size = params['test_batch_size_per_card']
self.drop_last = False
self.infer_img = params['infer_img'] self.infer_img = params['infer_img']
def load_hierarchical_lmdb_dataset(self): def load_hierarchical_lmdb_dataset(self):
...@@ -114,7 +115,7 @@ class LMDBReader(object): ...@@ -114,7 +115,7 @@ class LMDBReader(object):
img=img, img=img,
image_shape=self.image_shape, image_shape=self.image_shape,
char_ops=self.char_ops, char_ops=self.char_ops,
tps=self.tps, tps=self.use_tps,
infer_mode=True) infer_mode=True)
yield norm_img yield norm_img
else: else:
...@@ -181,15 +182,15 @@ class SimpleReader(object): ...@@ -181,15 +182,15 @@ class SimpleReader(object):
self.max_text_length = params['max_text_length'] self.max_text_length = params['max_text_length']
self.mode = params['mode'] self.mode = params['mode']
self.infer_img = params['infer_img'] self.infer_img = params['infer_img']
self.tps = False self.use_tps = False
if "tps" in params: if "tps" in params:
self.tps = True self.ues_tps = True
self.drop_last = False
if params['mode'] == 'train': if params['mode'] == 'train':
self.batch_size = params['train_batch_size_per_card'] self.batch_size = params['train_batch_size_per_card']
self.drop_last = params['drop_last'] self.drop_last = True
else: else:
self.batch_size = params['test_batch_size_per_card'] self.batch_size = params['test_batch_size_per_card']
self.drop_last = False
def __call__(self, process_id): def __call__(self, process_id):
if self.mode != 'train': if self.mode != 'train':
...@@ -206,7 +207,7 @@ class SimpleReader(object): ...@@ -206,7 +207,7 @@ class SimpleReader(object):
img=img, img=img,
image_shape=self.image_shape, image_shape=self.image_shape,
char_ops=self.char_ops, char_ops=self.char_ops,
tps=self.tps, tps=self.use_tps,
infer_mode=True) infer_mode=True)
yield norm_img yield norm_img
else: else:
......
...@@ -95,14 +95,10 @@ def process_image(img, ...@@ -95,14 +95,10 @@ def process_image(img,
max_text_length=None, max_text_length=None,
tps=None, tps=None,
infer_mode=False): infer_mode=False):
if not infer_mode or char_ops.character_type == "en": if not infer_mode or char_ops.character_type == "en" or tps != None:
norm_img = resize_norm_img(img, image_shape) norm_img = resize_norm_img(img, image_shape)
else: else:
if tps != None and char_ops.character_type == "ch": norm_img = resize_norm_img_chinese(img, image_shape)
image_shape = [3, 32, 320]
norm_img = resize_norm_img(img, image_shape)
else:
norm_img = resize_norm_img_chinese(img, image_shape)
norm_img = norm_img[np.newaxis, :] norm_img = norm_img[np.newaxis, :]
if label is not None: if label is not None:
char_num = char_ops.get_char_num() char_num = char_ops.get_char_num()
......
...@@ -38,8 +38,10 @@ class TextRecognizer(object): ...@@ -38,8 +38,10 @@ class TextRecognizer(object):
char_ops_params["character_dict_path"] = args.rec_char_dict_path char_ops_params["character_dict_path"] = args.rec_char_dict_path
if self.rec_algorithm != "RARE": if self.rec_algorithm != "RARE":
char_ops_params['loss_type'] = 'ctc' char_ops_params['loss_type'] = 'ctc'
self.loss_type = 'ctc'
else: else:
char_ops_params['loss_type'] = 'attention' char_ops_params['loss_type'] = 'attention'
self.loss_type = 'attention'
self.char_ops = CharacterOps(char_ops_params) self.char_ops = CharacterOps(char_ops_params)
def resize_norm_img(self, img, max_wh_ratio): def resize_norm_img(self, img, max_wh_ratio):
...@@ -85,7 +87,7 @@ class TextRecognizer(object): ...@@ -85,7 +87,7 @@ class TextRecognizer(object):
self.input_tensor.copy_from_cpu(norm_img_batch) self.input_tensor.copy_from_cpu(norm_img_batch)
self.predictor.zero_copy_run() self.predictor.zero_copy_run()
if self.rec_algorithm != "RARE": if self.loss_type == "ctc":
rec_idx_batch = self.output_tensors[0].copy_to_cpu() rec_idx_batch = self.output_tensors[0].copy_to_cpu()
rec_idx_lod = self.output_tensors[0].lod()[0] rec_idx_lod = self.output_tensors[0].lod()[0]
predict_batch = self.output_tensors[1].copy_to_cpu() predict_batch = self.output_tensors[1].copy_to_cpu()
...@@ -139,9 +141,13 @@ if __name__ == "__main__": ...@@ -139,9 +141,13 @@ if __name__ == "__main__":
img_list.append(img) img_list.append(img)
try: try:
rec_res, predict_time = text_recognizer(img_list) rec_res, predict_time = text_recognizer(img_list)
except: except Exception as e:
print(e)
logger.info( logger.info(
"ERROR!! \nInput image shape is not equal with config. TPS does not support variable shape.\n" "ERROR!!!! \n"
"Please read the FAQ:https://github.com/PaddlePaddle/PaddleOCR#faq \n"
"If your model has tps module: "
"TPS does not support variable shape.\n"
"Please set --rec_image_shape=input_shape and --rec_char_type='en' ") "Please set --rec_image_shape=input_shape and --rec_char_type='en' ")
exit() exit()
for ino in range(len(img_list)): for ino in range(len(img_list)):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册