-[3. Model Training / Evaluation / Prediction](#3)
-[3.1 Training](#3-1)
-[3.2 Evaluation](#3-2)
-[3.3 Prediction](#3-3)
-[4. Inference and Deployment](#4)
-[4.1 Python Inference](#4-1)
-[4.2 C++ Inference](#4-2)
-[4.3 Serving](#4-3)
-[4.4 More](#4-4)
-[5. FAQ](#5)
<aname="1"></a>
## 1. Introduction
Paper:
> [NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition](https://arxiv.org/abs/1806.00926)
> Fenfen Sheng and Zhineng Chen and Bo Xu
> ICDAR, 2019
Using MJSynth and SynthText two text recognition datasets for training, and evaluating on IIIT, SVT, IC03, IC13, IC15, SVTP, CUTE datasets, the algorithm reproduction effect is as follows:
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
<aname="3"></a>
## 3. Model Training / Evaluation / Prediction
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
First, the model saved during the NRTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar)) ), you can use the following command to convert:
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
- If you modified the input size during training, please modify the `infer_shape` corresponding to NRTR in the `tools/export_model.py` file.
After the conversion is successful, there are three files in the directory:
```
/inference/rec_mtb_nrtr/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
For NRTR text recognition model inference, the following commands can be executed:
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9265879392623901)
```
<aname="4-2"></a>
### 4.2 C++ Inference
Not supported
<aname="4-3"></a>
### 4.3 Serving
Not supported
<aname="4-4"></a>
### 4.4 More
Not supported
<aname="5"></a>
## 5. FAQ
1. In the `NRTR` paper, Beam search is used to decode characters, but the speed is slow. Beam search is not used by default here, and greedy search is used to decode characters.
## Citation
```bibtex
@article{Sheng2019NRTR,
author={Fenfen Sheng and Zhineng Chen andBo Xu},
title={NRTR: A No-Recurrence Sequence-to-Sequence Model For Scene Text Recognition},
Please refer to ["Environment Preparation"](./environment.md) to configure the PaddleOCR environment, and refer to ["Project Clone"](./clone.md) to clone the project code.
Please refer to [Text Recognition Tutorial](./recognition.md). PaddleOCR modularizes the code, and training different recognition models only requires **changing the configuration file**.
Training:
Specifically, after the data preparation is completed, the training can be started. The training command is as follows:
```
#Single GPU training (long training period, not recommended)
You can download the model files and configuration files provided by `SVTR`: [download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar), take `SVTR-T` as an example, Use the following command to evaluate:
First, the model saved during the SVTR text recognition training process is converted into an inference model. ( [Model download link](https://paddleocr.bj.bcebos.com/PP-OCRv3/chinese/rec_svtr_tiny_none_ctc_en_train.tar)) ), you can use the following command to convert:
- If you are training the model on your own dataset and have modified the dictionary file, please pay attention to modify the `character_dict_path` in the configuration file to the modified dictionary file.
- If you modified the input size during training, please modify the `infer_shape` corresponding to SVTR in the `tools/export_model.py` file.
After the conversion is successful, there are three files in the directory:
```
/inference/rec_svtr_tiny_stn_en/
├── inference.pdiparams
├── inference.pdiparams.info
└── inference.pdmodel
```
For SVTR text recognition model inference, the following commands can be executed:
After executing the command, the prediction result (recognized text and score) of the image above is printed to the screen, an example is as follows:
The result is as follows:
```shell
Predicts of ./doc/imgs_words_en/word_10.png:('pain', 0.9999998807907104)
```
<aname="4-2"></a>
### 4.2 C++ Inference
Not supported
<aname="4-3"></a>
### 4.3 Serving
Not supported
<aname="4-4"></a>
### 4.4 More
Not supported
<aname="5"></a>
## 5. FAQ
1. Since most of the op operators used by `SVTR` are matrix multiplication, in the GPU environment, the speed has an advantage, but in the environment where mkldnn is enabled on the CPU, `SVTR` has no advantage over the optimized convolutional network.