未验证 提交 a0d51569 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #2400 from cuicheng01/release/2.0

Update FAQ.md
...@@ -8,7 +8,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式 ...@@ -8,7 +8,7 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- 静态图版本:develop分支 - 静态图版本:develop分支
**近期更新** **近期更新**
- 2021.3.22 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数193个,每周一都会更新,欢迎大家持续关注。 - 2021.4.6 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数198个,每周一都会更新,欢迎大家持续关注。
- 2021.2.8 正式发布PaddleOCRv2.0(branch release/2.0)并设置为推荐用户使用的默认分支. 发布的详细内容,请参考: https://github.com/PaddlePaddle/PaddleOCR/releases/tag/v2.0.0 - 2021.2.8 正式发布PaddleOCRv2.0(branch release/2.0)并设置为推荐用户使用的默认分支. 发布的详细内容,请参考: https://github.com/PaddlePaddle/PaddleOCR/releases/tag/v2.0.0
- 2021.1.26,28,29 PaddleOCR官方研发团队带来技术深入解读三日直播课,1月26日、28日、29日晚上19:30,[直播地址](https://live.bilibili.com/21689802) - 2021.1.26,28,29 PaddleOCR官方研发团队带来技术深入解读三日直播课,1月26日、28日、29日晚上19:30,[直播地址](https://live.bilibili.com/21689802)
- 2021.1.21 更新多语言识别模型,目前支持语种超过27种,[多语言模型下载](./doc/doc_ch/models_list.md),包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等,后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048) - 2021.1.21 更新多语言识别模型,目前支持语种超过27种,[多语言模型下载](./doc/doc_ch/models_list.md),包括中文简体、中文繁体、英文、法文、德文、韩文、日文、意大利文、西班牙文、葡萄牙文、俄罗斯文、阿拉伯文等,后续计划可以参考[多语言研发计划](https://github.com/PaddlePaddle/PaddleOCR/issues/1048)
...@@ -104,8 +104,8 @@ PaddleOCR同时支持动态图与静态图两种编程范式 ...@@ -104,8 +104,8 @@ PaddleOCR同时支持动态图与静态图两种编程范式
- [效果展示](#效果展示) - [效果展示](#效果展示)
- FAQ - FAQ
- [【精选】OCR精选10个问题](./doc/doc_ch/FAQ.md) - [【精选】OCR精选10个问题](./doc/doc_ch/FAQ.md)
- [【理论篇】OCR通用37个问题](./doc/doc_ch/FAQ.md) - [【理论篇】OCR通用41个问题](./doc/doc_ch/FAQ.md)
- [【实战篇】PaddleOCR实战141个问题](./doc/doc_ch/FAQ.md) - [【实战篇】PaddleOCR实战147个问题](./doc/doc_ch/FAQ.md)
- [技术交流群](#欢迎加入PaddleOCR技术交流群) - [技术交流群](#欢迎加入PaddleOCR技术交流群)
- [参考文献](./doc/doc_ch/reference.md) - [参考文献](./doc/doc_ch/reference.md)
- [许可证书](#许可证书) - [许可证书](#许可证书)
......
...@@ -9,34 +9,34 @@ ...@@ -9,34 +9,34 @@
## PaddleOCR常见问题汇总(持续更新) ## PaddleOCR常见问题汇总(持续更新)
* [近期更新(2021.3.22](#近期更新) * [近期更新(2021.4.6](#近期更新)
* [【精选】OCR精选10个问题](#OCR精选10个问题) * [【精选】OCR精选10个问题](#OCR精选10个问题)
* [【理论篇】OCR通用40个问题](#OCR通用问题) * [【理论篇】OCR通用41个问题](#OCR通用问题)
* [基础知识13题](#基础知识) * [基础知识13题](#基础知识)
* [数据集8题](#数据集2) * [数据集8题](#数据集2)
* [模型训练调优19](#模型训练调优2) * [模型训练调优20](#模型训练调优2)
* [【实战篇】PaddleOCR实战143个问题](#PaddleOCR实战问题) * [【实战篇】PaddleOCR实战147个问题](#PaddleOCR实战问题)
* [使用咨询54](#使用咨询) * [使用咨询56](#使用咨询)
* [数据集18题](#数据集3) * [数据集18题](#数据集3)
* [模型训练调优32](#模型训练调优3) * [模型训练调优33](#模型训练调优3)
* [预测部署39](#预测部署3) * [预测部署40](#预测部署3)
<a name="近期更新"></a> <a name="近期更新"></a>
## 近期更新(2021.3.22 ## 近期更新(2021.4.6
#### Q2.1.13: PaddleOCR提供的文本识别算法包括哪些 #### Q3.4.40: 使用hub_serving部署,延时较高,可能的原因是什么呀
**A**: PaddleOCR主要提供五种文本识别算法,包括CRNN\StarNet\RARAE\Rosetta和SRN, 其中CRNN\StarNet和Rosetta是基于ctc的文字识别算法,RARE是基于attention的文字识别算法;SRN为百度自研的文本识别算法,引入了语义信息,显著提升了准确率。 详情可参照如下页面:[文本识别算法](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.0/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95) **A**: 首先,测试的时候第一张图延时较高,可以多测试几张然后观察后几张图的速度;其次,如果是在cpu端部署serving端模型(如backbone为ResNet34),耗时较慢,建议在cpu端部署mobile(如backbone为MobileNetV3)模型。
#### Q2.2.8: DBNet如果想使用多边形作为输入,数据标签格式应该如何设定 #### Q2.3.20: 如何根据不同的硬件平台选用不同的backbone
**A**如果想使用多边形作为DBNet的输入,数据标签也应该用多边形来表示。这样子可以更好得拟合弯曲文本。PPOCRLabel暂时只支持矩形框标注和四边形框标注 **A**在不同的硬件上,不同的backbone的速度优势不同,可以根据不同平台的速度-精度图来确定backbone,这里可以参考[PaddleClas模型速度-精度图](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/docs/zh_CN/models)
#### Q2.3.19: 参照文档做实际项目时,是重新训练还是在官方训练的基础上进行训练?具体如何操作 #### Q3.1.55: 目前PaddleOCR有知识蒸馏的demo吗
**A**基于官方提供的模型,进行finetune的话,收敛会更快一些。 具体操作上,以识别模型训练为例:如果修改了字符文件,可以设置pretraind_model为官方提供的预训练模型 **A**目前我们还没有提供PaddleOCR知识蒸馏的相关demo,PaddleClas开源了一个效果还不错的方案,可以移步[SSLD知识蒸馏方案](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/docs/zh_CN/advanced_tutorials/distillation/distillation.md), paper: https://arxiv.org/abs/2103.05959 关于PaddleOCR的蒸馏,我们也会在未来支持。
#### Q3.1.53: 预测时提示图像过大,显存、内存溢出了,应该如何处理 #### Q3.3.33: 训练识别和检测时学习率要加上warmup,目的是什么
**A**: 可以按照这个PR的修改来缓解显存、内存占用 [#2230](https://github.com/PaddlePaddle/PaddleOCR/pull/2230) **A**: Warmup机制先使学习率从一个较小的值逐步升到一个较大的值,而不是直接就使用较大的学习率,这样有助于模型的稳定收敛。在OCR检测和OCR识别中,一般会带来精度~0.5%的提升。
#### Q3.1.54: 用c++来部署,目前支持Paddle2.0的模型吗 #### Q3.1.56: 在使用PPOCRLabel的时候,如何标注倾斜的文字
**A**: PPOCR 2.0的模型在arm上运行可以参照该PR [#1877](https://github.com/PaddlePaddle/PaddleOCR/pull/1877) **A**: 如果矩形框标注后空白冗余较多,可以尝试PPOCRLabel提供的四点标注,可以标注各种倾斜角度的文本。
<a name="OCR精选10个问题"></a> <a name="OCR精选10个问题"></a>
## 【精选】OCR精选10个问题 ## 【精选】OCR精选10个问题
...@@ -310,6 +310,9 @@ ...@@ -310,6 +310,9 @@
#### Q2.3.19: 参照文档做实际项目时,是重新训练还是在官方训练的基础上进行训练?具体如何操作? #### Q2.3.19: 参照文档做实际项目时,是重新训练还是在官方训练的基础上进行训练?具体如何操作?
**A**: 基于官方提供的模型,进行finetune的话,收敛会更快一些。 具体操作上,以识别模型训练为例:如果修改了字符文件,可以设置pretraind_model为官方提供的预训练模型 **A**: 基于官方提供的模型,进行finetune的话,收敛会更快一些。 具体操作上,以识别模型训练为例:如果修改了字符文件,可以设置pretraind_model为官方提供的预训练模型
#### Q2.3.20: 如何根据不同的硬件平台选用不同的backbone?
**A**:在不同的硬件上,不同的backbone的速度优势不同,可以根据不同平台的速度-精度图来确定backbone,这里可以参考[PaddleClas模型速度-精度图](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/docs/zh_CN/models)
<a name="PaddleOCR实战问题"></a> <a name="PaddleOCR实战问题"></a>
## 【实战篇】PaddleOCR实战问题 ## 【实战篇】PaddleOCR实战问题
...@@ -595,6 +598,13 @@ repo中config.yml文件的前后处理参数和inference预测默认的超参数 ...@@ -595,6 +598,13 @@ repo中config.yml文件的前后处理参数和inference预测默认的超参数
#### Q3.1.54: 用c++来部署,目前支持Paddle2.0的模型吗? #### Q3.1.54: 用c++来部署,目前支持Paddle2.0的模型吗?
**A**: PPOCR 2.0的模型在arm上运行可以参照该PR [#1877](https://github.com/PaddlePaddle/PaddleOCR/pull/1877) **A**: PPOCR 2.0的模型在arm上运行可以参照该PR [#1877](https://github.com/PaddlePaddle/PaddleOCR/pull/1877)
#### Q3.1.55: 目前PaddleOCR有知识蒸馏的demo吗?
**A**: 目前我们还没有提供PaddleOCR知识蒸馏的相关demo,PaddleClas开源了一个效果还不错的方案,可以移步[SSLD知识蒸馏方案](https://github.com/PaddlePaddle/PaddleClas/blob/release%2F2.0/docs/zh_CN/advanced_tutorials/distillation/distillation.md), paper: https://arxiv.org/abs/2103.05959 关于PaddleOCR的蒸馏,我们也会在未来支持。
#### Q3.1.56: 在使用PPOCRLabel的时候,如何标注倾斜的文字?
**A**: 如果矩形框标注后空白冗余较多,可以尝试PPOCRLabel提供的四点标注,可以标注各种倾斜角度的文本。
<a name="数据集3"></a> <a name="数据集3"></a>
### 数据集 ### 数据集
...@@ -861,8 +871,12 @@ lr: ...@@ -861,8 +871,12 @@ lr:
warmup_epoch: 2 warmup_epoch: 2
``` ```
#### Q3.3.33: 训练识别和检测时学习率要加上warmup,目的是什么?
**A**: Warmup机制先使学习率从一个较小的值逐步升到一个较大的值,而不是直接就使用较大的学习率,这样有助于模型的稳定收敛。在OCR检测和OCR识别中,一般会带来精度~0.5%的提升。
<a name="预测部署3"></a> <a name="预测部署3"></a>
### 预测部署 ### 预测部署
#### Q3.4.1:如何pip安装opt模型转换工具? #### Q3.4.1:如何pip安装opt模型转换工具?
...@@ -1053,3 +1067,7 @@ nvidia-smi --lock-gpu-clocks=1590 -i 0 ...@@ -1053,3 +1067,7 @@ nvidia-smi --lock-gpu-clocks=1590 -i 0
#### Q3.4.39:内网环境如何进行服务化部署呢? #### Q3.4.39:内网环境如何进行服务化部署呢?
**A**:仍然可以使用PaddleServing或者HubServing进行服务化部署,保证内网地址可以访问即可。 **A**:仍然可以使用PaddleServing或者HubServing进行服务化部署,保证内网地址可以访问即可。
#### Q3.4.40: 使用hub_serving部署,延时较高,可能的原因是什么呀?
**A**: 首先,测试的时候第一张图延时较高,可以多测试几张然后观察后几张图的速度;其次,如果是在cpu端部署serving端模型(如backbone为ResNet34),耗时较慢,建议在cpu端部署mobile(如backbone为MobileNetV3)模型。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册