未验证 提交 9af6ab8f 编写于 作者: S shaohua.zhang 提交者: GitHub

Merge pull request #6 from PaddlePaddle/develop

update-2020-7-27
......@@ -3,7 +3,7 @@
This tutorial will introduce how to use paddle-lite to deploy paddleOCR ultra-lightweight Chinese and English detection models on mobile phones.
addle Lite is a lightweight inference engine for PaddlePaddle.
paddle-lite is a lightweight inference engine for PaddlePaddle.
It provides efficient inference capabilities for mobile phones and IOTs,
and extensively integrates cross-platform hardware to provide lightweight
deployment solutions for end-side deployment issues.
......
......@@ -9,9 +9,21 @@
我们推荐用户使用GPU来做Paddle Serving的OCR服务部署
**CUDA版本:9.0**
**CUDNN版本:7.0**
**操作系统版本:CentOS 6以上**
**Python3操作指南:**
```
#以下提供beta版本的paddle serving whl包,欢迎试用,正式版会在7月底正式上线
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_server_gpu-0.3.2-py3-none-any.whl
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_client-0.3.2-cp36-none-any.whl
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_app-0.1.2-py3-none-any.whl
python -m pip install paddle_serving_app-0.1.2-py3-none-any.whl paddle_serving_server_gpu-0.3.2-py3-none-any.whl paddle_serving_client-0.3.2-cp36-none-any.whl
```
**Python2操作指南:**
```
#以下提供beta版本的paddle serving whl包,欢迎试用,正式版会在7月底正式上线
wget --no-check-certificate https://paddle-serving.bj.bcebos.com/others/paddle_serving_server_gpu-0.3.2-py2-none-any.whl
......
......@@ -28,21 +28,38 @@ deploy/hubserving/ocr_system/
# 安装paddlehub
pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
# 设置环境变量
# 在Linux下设置环境变量
export PYTHONPATH=.
```
# 在Windows下设置环境变量
SET PYTHONPATH=.
```
### 2. 安装服务模块
PaddleOCR提供3种服务模块,根据需要安装所需模块。如:
PaddleOCR提供3种服务模块,根据需要安装所需模块。
安装检测服务模块:
```hub install deploy/hubserving/ocr_det/```
* 在Linux环境下,安装示例如下:
```shell
# 安装检测服务模块:
hub install deploy/hubserving/ocr_det/
或,安装识别服务模块:
```hub install deploy/hubserving/ocr_rec/```
# 或,安装识别服务模块:
hub install deploy/hubserving/ocr_rec/
或,安装检测+识别串联服务模块:
```hub install deploy/hubserving/ocr_system/```
# 或,安装检测+识别串联服务模块:
hub install deploy/hubserving/ocr_system/
```
* 在Windows环境下(文件夹的分隔符为`\`),安装示例如下:
```shell
# 安装检测服务模块:
hub install deploy\hubserving\ocr_det\
# 或,安装识别服务模块:
hub install deploy\hubserving\ocr_rec\
# 或,安装检测+识别串联服务模块:
hub install deploy\hubserving\ocr_system\
```
### 3. 启动服务
#### 方式1. 命令行命令启动(仅支持CPU)
......@@ -71,7 +88,7 @@ $ hub serving start --modules [Module1==Version1, Module2==Version2, ...] \
**启动命令:**
```hub serving start -c config.json```
其中,`config.json`格式如下:
其中,`config.json`格式如下:
```python
{
"modules_info": {
......@@ -124,7 +141,7 @@ hub serving start -c deploy/hubserving/ocr_system/config.json
## 返回结果格式说明
返回结果为列表(list),列表中的每一项为词典(dict),词典一共可能包含3种字段,信息如下:
|字段名称|数据类型|意义|
|字段名称|数据类型|意义|
|-|-|-|
|text|str|文本内容|
|confidence|float| 文本识别置信度|
......@@ -134,9 +151,9 @@ hub serving start -c deploy/hubserving/ocr_system/config.json
|字段名/模块名|ocr_det|ocr_rec|ocr_system|
|-|-|-|-|
|text||✔|✔|
|confidence||✔|✔|
|text_region|✔||✔|
|text||✔|✔|
|confidence||✔|✔|
|text_region|✔||✔|
**说明:** 如果需要增加、删除、修改返回字段,可在相应模块的`module.py`文件中进行修改,完整流程参考下一节自定义修改服务模块。
......@@ -157,4 +174,3 @@ hub serving start -c deploy/hubserving/ocr_system/config.json
- 5、重新启动服务
```hub serving start -m ocr_system```
......@@ -29,25 +29,38 @@ The following steps take the 2-stage series service as an example. If only the d
# Install paddlehub
pip3 install paddlehub --upgrade -i https://pypi.tuna.tsinghua.edu.cn/simple
# Set environment variables
# Set environment variables on Linux
export PYTHONPATH=.
```
# Set environment variables on Windows
SET PYTHONPATH=.
```
### 2. Install Service Module
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs. Such as:
PaddleOCR provides 3 kinds of service modules, install the required modules according to your needs.
Install the detection service module:
* On Linux platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy/hubserving/ocr_det/
```
Or, install the recognition service module:
```shell
# Or, install the recognition service module:
hub install deploy/hubserving/ocr_rec/
```
Or, install the 2-stage series service module:
```shell
# Or, install the 2-stage series service module:
hub install deploy/hubserving/ocr_system/
```
```
* On Windows platform, the examples are as follows.
```shell
# Install the detection service module:
hub install deploy\hubserving\ocr_det\
# Or, install the recognition service module:
hub install deploy\hubserving\ocr_rec\
# Or, install the 2-stage series service module:
hub install deploy\hubserving\ocr_system\
```
### 3. Start service
#### Way 1. Start with command line parameters (CPU only)
......@@ -119,7 +132,7 @@ python tools/test_hubserving.py server_url image_path
```
Two parameters need to be passed to the script:
- **server_url**:service address,format of which is
- **server_url**:service address,format of which is
`http://[ip_address]:[port]/predict/[module_name]`
For example, if the detection, recognition and 2-stage serial services are started with provided configuration files, the respective `server_url` would be:
`http://127.0.0.1:8866/predict/ocr_det`
......@@ -135,7 +148,7 @@ python tools/test_hubserving.py http://127.0.0.1:8868/predict/ocr_system ./doc/i
## Returned result format
The returned result is a list. Each item in the list is a dict. The dict may contain three fields. The information is as follows:
|field name|data type|description|
|field name|data type|description|
|-|-|-|
|text|str|text content|
|confidence|float|text recognition confidence|
......@@ -145,9 +158,9 @@ The fields returned by different modules are different. For example, the results
|field name/module name|ocr_det|ocr_rec|ocr_system|
|-|-|-|-|
|text||✔|✔|
|confidence||✔|✔|
|text_region|✔||✔|
|text||✔|✔|
|confidence||✔|✔|
|text_region|✔||✔|
**Note:** If you need to add, delete or modify the returned fields, you can modify the file `module.py` of the corresponding module. For the complete process, refer to the user-defined modification service module in the next section.
......
......@@ -135,6 +135,9 @@ if __name__ == "__main__":
text_detector = TextDetector(args)
count = 0
total_time = 0
draw_img_save = "./inference_results"
if not os.path.exists(draw_img_save):
os.makedirs(draw_img_save)
for image_file in image_file_list:
img = cv2.imread(image_file)
if img is None:
......@@ -147,6 +150,7 @@ if __name__ == "__main__":
print("Predict time of %s:" % image_file, elapse)
src_im = utility.draw_text_det_res(dt_boxes, image_file)
img_name_pure = image_file.split("/")[-1]
cv2.imwrite("./inference_results/det_res_%s" % img_name_pure, src_im)
cv2.imwrite(
os.path.join(draw_img_save, "det_res_%s" % img_name_pure), src_im)
if count > 1:
print("Avg Time:", total_time / (count - 1))
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册