提交 871ee877 编写于 作者: M MissPenguin

update

上级 4862d30c
......@@ -17,6 +17,16 @@
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力开发者训练出更好的模型,并应用落地。
![](doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg) | ![](doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg)
---|---
![](./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg) | ![](./doc/imgs_results/french_0.jpg)
---|---
![](./ppstructure/docs/table/ppstructure.GIF)
- [更多可视化效果](./doc/doc_ch/visualization.md)
## 近期更新
- 2021.12.21《动手学OCR · 十讲》课程开讲,12月21日起每晚八点半线上授课![免费报名地址](https://aistudio.baidu.com/aistudio/course/introduce/25207)
......@@ -39,7 +49,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- 在线网站体验:超轻量PP-OCR mobile模型体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
- 移动端demo体验:[安装包DEMO下载地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统)
- [快速开始(中英文/多语言/文档分析)](./doc/doc_ch/quickstart.md)
- 一行命令快速使用:[快速开始(中英文/多语言/文档分析)](./doc/doc_ch/quickstart.md)
<a name="电子书"></a>
## 《动手学OCR》电子书
......@@ -110,6 +120,10 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [端到端算法](./doc/doc_ch/algorithm_overview.md#2-%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
- [使用PaddleOCR架构添加新算法](./doc/doc_ch/add_new_algorithm.md)
- [场景应用](./doc/doc_ch/application.md)
- [金融场景(表单/票据等)]()
- [工业场景(电表度数/车牌等)]()
- [教育场景(手写体/公式等)]()
- [医疗场景(化验单等)]()
- 数据标注与合成
- [半自动标注工具PPOCRLabel](./PPOCRLabel/README_ch.md)
- [数据合成工具Style-Text](./StyleText/README_ch.md)
......
# PP-OCR系列模型
[English](../doc_en/ppocr_introduction_en.md) | 简体中文
# PP-OCR
- [PP-OCRv2 pipeline]()
- [Benchmark]()
- [Modle zoo]()
- [1. 简介](#1)
- [2. 特性](#2)
- [3. 效果展示](#3)
- [4. 使用教程](#4)
- [4.1 快速体验](#41)
- [4.2 模型训练、压缩、推理部署](#42)
- [5. 模型库](#5)
<a name="1"></a>
## 1. 简介
PP-OCR是PaddleOCR自研的实用的超轻量OCR系统。在实现[前沿算法](algorithm.md)的基础上,考虑精度与速度的平衡,进行**模型瘦身****深度优化**,使其尽可能满足产业落地需求。
PP-OCR是一个两阶段的OCR系统,其中文本检测算法选用[DB](algorithm_det_db.md),文本识别算法选用[CRNN](algorithm_rec_crnn.md),并在检测和识别模块之间添加[文本方向分类器](angle_class.md),以应对不同方向的文本识别。
PP-OCR系统pipeline如下:
## PP-OCRv2 Pipeline
<div align="center">
<img src="../ppocrv2_framework.jpg" width="800">
</div>
[1] PP-OCR是一个实用的超轻量OCR系统。主要由DB文本检测、检测框矫正和CRNN文本识别三部分组成。该系统从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身(如绿框所示),最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941
[2] PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和[Enhanced CTC loss](./doc/doc_ch/enhanced_ctc_loss.md)损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCRv2[技术报告](https://arxiv.org/abs/2109.03144)
\ No newline at end of file
PP-OCR系统在持续迭代优化,目前已发布PP-OCR和PP-OCRv2两个版本:
[1] PP-OCR从骨干网络选择和调整、预测头部的设计、数据增强、学习率变换策略、正则化参数选择、预训练模型使用以及模型自动裁剪量化8个方面,采用19个有效策略,对各个模块的模型进行效果调优和瘦身(如绿框所示),最终得到整体大小为3.5M的超轻量中英文OCR和2.8M的英文数字OCR。更多细节请参考PP-OCR技术方案 https://arxiv.org/abs/2009.09941
[2] PP-OCRv2在PP-OCR的基础上,进一步在5个方面重点优化,检测模型采用CML协同互学习知识蒸馏策略和CopyPaste数据增广策略;识别模型采用LCNet轻量级骨干网络、UDML 改进知识蒸馏策略和[Enhanced CTC loss](./doc/doc_ch/enhanced_ctc_loss.md)损失函数改进(如上图红框所示),进一步在推理速度和预测效果上取得明显提升。更多细节请参考PP-OCRv2[技术报告](https://arxiv.org/abs/2109.03144)
<a name="2"></a>
## 2. 特性
- 超轻量PP-OCRv2系列:检测(3.1M)+ 方向分类器(1.4M)+ 识别(8.5M)= 13.0M
- 超轻量PP-OCR mobile移动端系列:检测(3.0M)+方向分类器(1.4M)+ 识别(5.0M)= 9.4M
- 通用PP-OCR server系列:检测(47.1M)+方向分类器(1.4M)+ 识别(94.9M)= 143.4M
- 支持中英文数字组合识别、竖排文本识别、长文本识别
- 支持多语言识别:韩语、日语、德语、法语等约80种语言
<a name="3"></a>
## 3. 效果展示 [more](./visualization.md)
<details open>
<summary>PP-OCRv2 中文模型</summary>
<div align="center">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
</div>
<div align="center">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-OCRv2 英文模型</summary>
<div align="center">
<img src="../imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-OCRv2 其他语言模型</summary>
<div align="center">
<img src="../imgs_results/french_0.jpg" width="800">
<img src="../imgs_results/korean.jpg" width="800">
</div>
</details>
<a name="4"></a>
## 4. 使用教程
<a name="41"></a>
### 4.1 快速体验
- 在线网站体验:超轻量PP-OCR mobile模型体验地址:https://www.paddlepaddle.org.cn/hub/scene/ocr
- 移动端demo体验:[安装包DEMO下载地址](https://ai.baidu.com/easyedge/app/openSource?from=paddlelite)(基于EasyEdge和Paddle-Lite, 支持iOS和Android系统)
- 一行命令快速使用:[快速开始(中英文/多语言)](./doc/doc_ch/quickstart.md)
<a name="42"></a>
### 4.2 模型训练、压缩、推理部署
更多教程,包括模型训练、模型压缩、推理部署等,请参考[文档教程](../../README_ch.md#文档教程)
<a name="5"></a>
## 5. 模型库
PP-OCR中英文模型列表如下:
| 模型简介 | 模型名称 | 推荐场景 | 检测模型 | 方向分类器 | 识别模型 |
| ------------------------------------- | ----------------------- | --------------- | ------------------------------------------------------------ | ------------------------------------------------------------ | ------------------------------------------------------------ |
| 中英文超轻量PP-OCRv2模型(13.0M) | ch_PP-OCRv2_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
| 中英文超轻量PP-OCR mobile模型(9.4M) | ch_ppocr_mobile_v2.0_xx | 移动端&服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
| 中英文通用PP-OCR server模型(143.4M) | ch_ppocr_server_v2.0_xx | 服务器端 | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_cls_train.tar) | [推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
更多模型下载(包括英文数字模型、多语言模型、Paddle-Lite模型等),可以参考[PP-OCR 系列模型下载](./models_list.md)
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册