Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
7c5b4706
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
1 年多 前同步成功
通知
1533
Star
32963
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7c5b4706
编写于
7月 14, 2022
作者:
xuyang2233
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modified config and resnet31
上级
e1816227
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
33 addition
and
18 deletion
+33
-18
configs/rec/rec_r31_robustscanner.yml
configs/rec/rec_r31_robustscanner.yml
+3
-3
ppocr/modeling/backbones/rec_resnet_31.py
ppocr/modeling/backbones/rec_resnet_31.py
+30
-15
未找到文件。
configs/rec/rec_r31_robustscanner.yml
浏览文件 @
7c5b4706
...
...
@@ -39,6 +39,7 @@ Architecture:
Transform
:
Backbone
:
name
:
ResNet31
init_type
:
KaimingNormal
Head
:
name
:
RobustScannerHead
enc_outchannles
:
128
...
...
@@ -64,9 +65,8 @@ Metric:
Train
:
dataset
:
name
:
SimpleDataSet
label_file_list
:
[
'
./train_data/train_list.txt'
]
data_dir
:
./train_data/
name
:
LMDBDataSet
data_dir
:
./train_data/data_lmdb_release/training/
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
...
...
ppocr/modeling/backbones/rec_resnet_31.py
浏览文件 @
7c5b4706
...
...
@@ -29,11 +29,7 @@ import numpy as np
__all__
=
[
"ResNet31"
]
conv_weight_attr
=
nn
.
initializer
.
KaimingNormal
()
bn_weight_attr
=
ParamAttr
(
initializer
=
nn
.
initializer
.
Uniform
(),
learning_rate
=
1
)
def
conv3x3
(
in_channel
,
out_channel
,
stride
=
1
):
def
conv3x3
(
in_channel
,
out_channel
,
stride
=
1
,
conv_weight_attr
=
None
):
return
nn
.
Conv2D
(
in_channel
,
out_channel
,
...
...
@@ -47,12 +43,14 @@ def conv3x3(in_channel, out_channel, stride=1):
class
BasicBlock
(
nn
.
Layer
):
expansion
=
1
def
__init__
(
self
,
in_channels
,
channels
,
stride
=
1
,
downsample
=
False
):
def
__init__
(
self
,
in_channels
,
channels
,
stride
=
1
,
downsample
=
False
,
conv_weight_attr
=
None
,
bn_weight_attr
=
None
):
super
().
__init__
()
self
.
conv1
=
conv3x3
(
in_channels
,
channels
,
stride
)
self
.
conv1
=
conv3x3
(
in_channels
,
channels
,
stride
,
conv_weight_attr
=
conv_weight_attr
)
self
.
bn1
=
nn
.
BatchNorm2D
(
channels
,
weight_attr
=
bn_weight_attr
)
self
.
relu
=
nn
.
ReLU
()
self
.
conv2
=
conv3x3
(
channels
,
channels
)
self
.
conv2
=
conv3x3
(
channels
,
channels
,
conv_weight_attr
=
conv_weight_attr
)
self
.
bn2
=
nn
.
BatchNorm2D
(
channels
,
weight_attr
=
bn_weight_attr
)
self
.
downsample
=
downsample
if
downsample
:
...
...
@@ -96,6 +94,7 @@ class ResNet31(nn.Layer):
channels (list[int]): List of out_channels of Conv2d layer.
out_indices (None | Sequence[int]): Indices of output stages.
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
init_type (None | str): the config to control the initialization.
'''
def
__init__
(
self
,
...
...
@@ -103,7 +102,8 @@ class ResNet31(nn.Layer):
layers
=
[
1
,
2
,
5
,
3
],
channels
=
[
64
,
128
,
256
,
256
,
512
,
512
,
512
],
out_indices
=
None
,
last_stage_pool
=
False
):
last_stage_pool
=
False
,
init_type
=
None
):
super
(
ResNet31
,
self
).
__init__
()
assert
isinstance
(
in_channels
,
int
)
assert
isinstance
(
last_stage_pool
,
bool
)
...
...
@@ -111,6 +111,16 @@ class ResNet31(nn.Layer):
self
.
out_indices
=
out_indices
self
.
last_stage_pool
=
last_stage_pool
conv_weight_attr
=
None
bn_weight_attr
=
None
if
init_type
is
not
None
:
support_dict
=
[
'KaimingNormal'
]
assert
init_type
in
support_dict
,
Exception
(
"resnet31 only support {}"
.
format
(
support_dict
))
conv_weight_attr
=
nn
.
initializer
.
KaimingNormal
()
bn_weight_attr
=
ParamAttr
(
initializer
=
nn
.
initializer
.
Uniform
(),
learning_rate
=
1
)
# conv 1 (Conv Conv)
self
.
conv1_1
=
nn
.
Conv2D
(
in_channels
,
channels
[
0
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv_weight_attr
)
...
...
@@ -125,7 +135,8 @@ class ResNet31(nn.Layer):
# conv 2 (Max-pooling, Residual block, Conv)
self
.
pool2
=
nn
.
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
block2
=
self
.
_make_layer
(
channels
[
1
],
channels
[
2
],
layers
[
0
])
self
.
block2
=
self
.
_make_layer
(
channels
[
1
],
channels
[
2
],
layers
[
0
],
conv_weight_attr
=
conv_weight_attr
,
bn_weight_attr
=
bn_weight_attr
)
self
.
conv2
=
nn
.
Conv2D
(
channels
[
2
],
channels
[
2
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv_weight_attr
)
self
.
bn2
=
nn
.
BatchNorm2D
(
channels
[
2
],
weight_attr
=
bn_weight_attr
)
...
...
@@ -134,7 +145,8 @@ class ResNet31(nn.Layer):
# conv 3 (Max-pooling, Residual block, Conv)
self
.
pool3
=
nn
.
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
block3
=
self
.
_make_layer
(
channels
[
2
],
channels
[
3
],
layers
[
1
])
self
.
block3
=
self
.
_make_layer
(
channels
[
2
],
channels
[
3
],
layers
[
1
],
conv_weight_attr
=
conv_weight_attr
,
bn_weight_attr
=
bn_weight_attr
)
self
.
conv3
=
nn
.
Conv2D
(
channels
[
3
],
channels
[
3
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv_weight_attr
)
self
.
bn3
=
nn
.
BatchNorm2D
(
channels
[
3
],
weight_attr
=
bn_weight_attr
)
...
...
@@ -143,7 +155,8 @@ class ResNet31(nn.Layer):
# conv 4 (Max-pooling, Residual block, Conv)
self
.
pool4
=
nn
.
MaxPool2D
(
kernel_size
=
(
2
,
1
),
stride
=
(
2
,
1
),
padding
=
0
,
ceil_mode
=
True
)
self
.
block4
=
self
.
_make_layer
(
channels
[
3
],
channels
[
4
],
layers
[
2
])
self
.
block4
=
self
.
_make_layer
(
channels
[
3
],
channels
[
4
],
layers
[
2
],
conv_weight_attr
=
conv_weight_attr
,
bn_weight_attr
=
bn_weight_attr
)
self
.
conv4
=
nn
.
Conv2D
(
channels
[
4
],
channels
[
4
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv_weight_attr
)
self
.
bn4
=
nn
.
BatchNorm2D
(
channels
[
4
],
weight_attr
=
bn_weight_attr
)
...
...
@@ -154,7 +167,8 @@ class ResNet31(nn.Layer):
if
self
.
last_stage_pool
:
self
.
pool5
=
nn
.
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
block5
=
self
.
_make_layer
(
channels
[
4
],
channels
[
5
],
layers
[
3
])
self
.
block5
=
self
.
_make_layer
(
channels
[
4
],
channels
[
5
],
layers
[
3
],
conv_weight_attr
=
conv_weight_attr
,
bn_weight_attr
=
bn_weight_attr
)
self
.
conv5
=
nn
.
Conv2D
(
channels
[
5
],
channels
[
5
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
,
weight_attr
=
conv_weight_attr
)
self
.
bn5
=
nn
.
BatchNorm2D
(
channels
[
5
],
weight_attr
=
bn_weight_attr
)
...
...
@@ -162,7 +176,7 @@ class ResNet31(nn.Layer):
self
.
out_channels
=
channels
[
-
1
]
def
_make_layer
(
self
,
input_channels
,
output_channels
,
blocks
):
def
_make_layer
(
self
,
input_channels
,
output_channels
,
blocks
,
conv_weight_attr
=
None
,
bn_weight_attr
=
None
):
layers
=
[]
for
_
in
range
(
blocks
):
downsample
=
None
...
...
@@ -179,7 +193,8 @@ class ResNet31(nn.Layer):
layers
.
append
(
BasicBlock
(
input_channels
,
output_channels
,
downsample
=
downsample
))
input_channels
,
output_channels
,
downsample
=
downsample
,
conv_weight_attr
=
conv_weight_attr
,
bn_weight_attr
=
bn_weight_attr
))
input_channels
=
output_channels
return
nn
.
Sequential
(
*
layers
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录