未验证 提交 718b8ca4 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #2579 from JetHong/dy/add_eval_mode

Dy/add eval mode
......@@ -60,8 +60,10 @@ PostProcess:
name: PGPostProcess
score_thresh: 0.5
mode: fast # fast or slow two ways
Metric:
name: E2EMetric
mode: A # two ways for eval, A: label from txt, B: label from gt_mat
gt_mat_dir: ./train_data/total_text/gt # the dir of gt_mat
character_dict_path: ppocr/utils/ic15_dict.txt
main_indicator: f_score_e2e
......@@ -70,13 +72,13 @@ Train:
dataset:
name: PGDataSet
data_dir: ./train_data/total_text/train
label_file_list: [./train_data/total_text/train/]
label_file_list: [./train_data/total_text/train/total_text.txt]
ratio_list: [1.0]
transforms:
- DecodeImage: # load image
img_mode: BGR
channel_first: False
- E2ELabelEncode:
- E2ELabelEncodeTrain:
- PGProcessTrain:
batch_size: 14 # same as loader: batch_size_per_card
min_crop_size: 24
......@@ -94,11 +96,12 @@ Eval:
dataset:
name: PGDataSet
data_dir: ./train_data/total_text/test
label_file_list: [./train_data/total_text/test/]
label_file_list: [./train_data/total_text/test/total_text.txt]
transforms:
- DecodeImage: # load image
img_mode: RGB
channel_first: False
- E2ELabelEncodeTest:
- E2EResizeForTest:
max_side_len: 768
- NormalizeImage:
......@@ -108,7 +111,7 @@ Eval:
order: 'hwc'
- ToCHWImage:
- KeepKeys:
keep_keys: [ 'image', 'shape', 'img_id']
keep_keys: [ 'image', 'shape', 'polys', 'texts', 'ignore_tags', 'img_id']
loader:
shuffle: False
drop_last: False
......
......@@ -187,7 +187,51 @@ class CTCLabelEncode(BaseRecLabelEncode):
return dict_character
class E2ELabelEncode(object):
class E2ELabelEncodeTest(BaseRecLabelEncode):
def __init__(self,
max_text_length,
character_dict_path=None,
character_type='EN',
use_space_char=False,
**kwargs):
super(E2ELabelEncodeTest,
self).__init__(max_text_length, character_dict_path,
character_type, use_space_char)
def __call__(self, data):
import json
padnum = len(self.dict)
label = data['label']
label = json.loads(label)
nBox = len(label)
boxes, txts, txt_tags = [], [], []
for bno in range(0, nBox):
box = label[bno]['points']
txt = label[bno]['transcription']
boxes.append(box)
txts.append(txt)
if txt in ['*', '###']:
txt_tags.append(True)
else:
txt_tags.append(False)
boxes = np.array(boxes, dtype=np.float32)
txt_tags = np.array(txt_tags, dtype=np.bool)
data['polys'] = boxes
data['ignore_tags'] = txt_tags
temp_texts = []
for text in txts:
text = text.lower()
text = self.encode(text)
if text is None:
return None
text = text + [padnum] * (self.max_text_len - len(text)
) # use 36 to pad
temp_texts.append(text)
data['texts'] = np.array(temp_texts)
return data
class E2ELabelEncodeTrain(object):
def __init__(self, **kwargs):
pass
......
......@@ -72,6 +72,7 @@ class PGDataSet(Dataset):
def __getitem__(self, idx):
file_idx = self.data_idx_order_list[idx]
data_line = self.data_lines[file_idx]
img_id = 0
try:
data_line = data_line.decode('utf-8')
substr = data_line.strip("\n").split(self.delimiter)
......@@ -79,9 +80,10 @@ class PGDataSet(Dataset):
label = substr[1]
img_path = os.path.join(self.data_dir, file_name)
if self.mode.lower() == 'eval':
img_id = int(data_line.split(".")[0][7:])
else:
img_id = 0
try:
img_id = int(data_line.split(".")[0][7:])
except:
img_id = 0
data = {'img_path': img_path, 'label': label, 'img_id': img_id}
if not os.path.exists(img_path):
raise Exception("{} does not exist!".format(img_path))
......
......@@ -18,16 +18,18 @@ from __future__ import print_function
__all__ = ['E2EMetric']
from ppocr.utils.e2e_metric.Deteval import get_socre, combine_results
from ppocr.utils.e2e_metric.Deteval import get_socre_A, get_socre_B, combine_results
from ppocr.utils.e2e_utils.extract_textpoint_slow import get_dict
class E2EMetric(object):
def __init__(self,
mode,
gt_mat_dir,
character_dict_path,
main_indicator='f_score_e2e',
**kwargs):
self.mode = mode
self.gt_mat_dir = gt_mat_dir
self.label_list = get_dict(character_dict_path)
self.max_index = len(self.label_list)
......@@ -35,13 +37,45 @@ class E2EMetric(object):
self.reset()
def __call__(self, preds, batch, **kwargs):
img_id = batch[2][0]
e2e_info_list = [{
'points': det_polyon,
'texts': pred_str
} for det_polyon, pred_str in zip(preds['points'], preds['texts'])]
result = get_socre(self.gt_mat_dir, img_id, e2e_info_list)
self.results.append(result)
if self.mode == 'A':
gt_polyons_batch = batch[2]
temp_gt_strs_batch = batch[3][0]
ignore_tags_batch = batch[4]
gt_strs_batch = []
for temp_list in temp_gt_strs_batch:
t = ""
for index in temp_list:
if index < self.max_index:
t += self.label_list[index]
gt_strs_batch.append(t)
for pred, gt_polyons, gt_strs, ignore_tags in zip(
[preds], gt_polyons_batch, [gt_strs_batch], ignore_tags_batch):
# prepare gt
gt_info_list = [{
'points': gt_polyon,
'text': gt_str,
'ignore': ignore_tag
} for gt_polyon, gt_str, ignore_tag in
zip(gt_polyons, gt_strs, ignore_tags)]
# prepare det
e2e_info_list = [{
'points': det_polyon,
'texts': pred_str
} for det_polyon, pred_str in
zip(pred['points'], pred['texts'])]
result = get_socre_A(gt_info_list, e2e_info_list)
self.results.append(result)
else:
img_id = batch[5][0]
e2e_info_list = [{
'points': det_polyon,
'texts': pred_str
} for det_polyon, pred_str in zip(preds['points'], preds['texts'])]
result = get_socre_B(self.gt_mat_dir, img_id, e2e_info_list)
self.results.append(result)
def get_metric(self):
metircs = combine_results(self.results)
......
......@@ -17,7 +17,144 @@ import scipy.io as io
from ppocr.utils.e2e_metric.polygon_fast import iod, area_of_intersection, area
def get_socre(gt_dir, img_id, pred_dict):
def get_socre_A(gt_dir, pred_dict):
allInputs = 1
def input_reading_mod(pred_dict):
"""This helper reads input from txt files"""
det = []
n = len(pred_dict)
for i in range(n):
points = pred_dict[i]['points']
text = pred_dict[i]['texts']
point = ",".join(map(str, points.reshape(-1, )))
det.append([point, text])
return det
def gt_reading_mod(gt_dict):
"""This helper reads groundtruths from mat files"""
gt = []
n = len(gt_dict)
for i in range(n):
points = gt_dict[i]['points'].tolist()
h = len(points)
text = gt_dict[i]['text']
xx = [
np.array(
['x:'], dtype='<U2'), 0, np.array(
['y:'], dtype='<U2'), 0, np.array(
['#'], dtype='<U1'), np.array(
['#'], dtype='<U1')
]
t_x, t_y = [], []
for j in range(h):
t_x.append(points[j][0])
t_y.append(points[j][1])
xx[1] = np.array([t_x], dtype='int16')
xx[3] = np.array([t_y], dtype='int16')
if text != "":
xx[4] = np.array([text], dtype='U{}'.format(len(text)))
xx[5] = np.array(['c'], dtype='<U1')
gt.append(xx)
return gt
def detection_filtering(detections, groundtruths, threshold=0.5):
for gt_id, gt in enumerate(groundtruths):
if (gt[5] == '#') and (gt[1].shape[1] > 1):
gt_x = list(map(int, np.squeeze(gt[1])))
gt_y = list(map(int, np.squeeze(gt[3])))
for det_id, detection in enumerate(detections):
detection_orig = detection
detection = [float(x) for x in detection[0].split(',')]
detection = list(map(int, detection))
det_x = detection[0::2]
det_y = detection[1::2]
det_gt_iou = iod(det_x, det_y, gt_x, gt_y)
if det_gt_iou > threshold:
detections[det_id] = []
detections[:] = [item for item in detections if item != []]
return detections
def sigma_calculation(det_x, det_y, gt_x, gt_y):
"""
sigma = inter_area / gt_area
"""
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
area(gt_x, gt_y)), 2)
def tau_calculation(det_x, det_y, gt_x, gt_y):
if area(det_x, det_y) == 0.0:
return 0
return np.round((area_of_intersection(det_x, det_y, gt_x, gt_y) /
area(det_x, det_y)), 2)
##############################Initialization###################################
# global_sigma = []
# global_tau = []
# global_pred_str = []
# global_gt_str = []
###############################################################################
for input_id in range(allInputs):
if (input_id != '.DS_Store') and (input_id != 'Pascal_result.txt') and (
input_id != 'Pascal_result_curved.txt') and (input_id != 'Pascal_result_non_curved.txt') and (
input_id != 'Deteval_result.txt') and (input_id != 'Deteval_result_curved.txt') \
and (input_id != 'Deteval_result_non_curved.txt'):
detections = input_reading_mod(pred_dict)
groundtruths = gt_reading_mod(gt_dir)
detections = detection_filtering(
detections,
groundtruths) # filters detections overlapping with DC area
dc_id = []
for i in range(len(groundtruths)):
if groundtruths[i][5] == '#':
dc_id.append(i)
cnt = 0
for a in dc_id:
num = a - cnt
del groundtruths[num]
cnt += 1
local_sigma_table = np.zeros((len(groundtruths), len(detections)))
local_tau_table = np.zeros((len(groundtruths), len(detections)))
local_pred_str = {}
local_gt_str = {}
for gt_id, gt in enumerate(groundtruths):
if len(detections) > 0:
for det_id, detection in enumerate(detections):
detection_orig = detection
detection = [float(x) for x in detection[0].split(',')]
detection = list(map(int, detection))
pred_seq_str = detection_orig[1].strip()
det_x = detection[0::2]
det_y = detection[1::2]
gt_x = list(map(int, np.squeeze(gt[1])))
gt_y = list(map(int, np.squeeze(gt[3])))
gt_seq_str = str(gt[4].tolist()[0])
local_sigma_table[gt_id, det_id] = sigma_calculation(
det_x, det_y, gt_x, gt_y)
local_tau_table[gt_id, det_id] = tau_calculation(
det_x, det_y, gt_x, gt_y)
local_pred_str[det_id] = pred_seq_str
local_gt_str[gt_id] = gt_seq_str
global_sigma = local_sigma_table
global_tau = local_tau_table
global_pred_str = local_pred_str
global_gt_str = local_gt_str
single_data = {}
single_data['sigma'] = global_sigma
single_data['global_tau'] = global_tau
single_data['global_pred_str'] = global_pred_str
single_data['global_gt_str'] = global_gt_str
return single_data
def get_socre_B(gt_dir, img_id, pred_dict):
allInputs = 1
def input_reading_mod(pred_dict):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册