Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
68380ab8
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
1 年多 前同步成功
通知
1533
Star
32963
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
68380ab8
编写于
5月 13, 2020
作者:
T
tink2123
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rec doc
上级
81ddc6a1
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
134 addition
and
0 deletion
+134
-0
doc/recognition.md
doc/recognition.md
+134
-0
未找到文件。
doc/recognition.md
0 → 100644
浏览文件 @
68380ab8
## 文字识别
### 数据准备
PaddleOCR 支持
`lmdb`
和
`通用数据`
两种数据格式,请按如下步骤设置数据集:
训练数据的默认存储路径是
`PaddleOCR/train_data`
,如果您的磁盘上已有数据集,只需创建软链接至数据集目录:
```
ln -sf <path/to/dataset> <path/to/paddle_detection>/train_data/dataset
```
*
数据下载
若您本地没有数据集,可以参考
[
DTRB
](
https://github.com/clovaai/deep-text-recognition-benchmark#download-lmdb-dataset-for-traininig-and-evaluation-from-here
)
,下载 benchmark 所需的lmdb格式数据集。也可在官网下载
[
icdar2015
](
http://rrc.cvc.uab.es/?ch=4&com=downloads
)
数据,用于快速验证。
*
使用自己数据集
若您希望使用自己的数据进行训练,请参考下文组织您的数据。
-
训练集
首先请将训练图片放入同一个文件夹(train_images),并用一个txt文件(rec_gt_train.txt)记录图片路径和标签。
*
注意: 默认请将图片路径和图片标签用
\t
分割,如用其他方式分割将造成训练报错
```
" 图像文件名 图像标注信息 "
train_data/train_0001.jpg 简单可依赖
train_data/train_0002.jpg 用科技让复杂的世界更简单
```
最终训练集应有如下文件结构:
|-train_data
|- rec_gt_train.txt
|- train_imags
|- train_001.jpg
|- train_002.jpg
|- train_003.jpg
| ...
-
评估集
同训练集类似,评估集也需要提供一个包含所有图片的文件夹(eval_images)和一个rec_gt_eval.txt,评估集的结构如下所示:
|-train_data
|- rec_gt_eval.txt
|- eval_imags
|- eval_001.jpg
|- eval_002.jpg
|- eval_003.jpg
| ...
-
字典
最后需要提供一个字典({word_dict_name}.txt),使模型在训练时,可以将所有出现的字符映射为字典的索引。
因此字典需要包含所有希望被正确识别的字符,{word_dict_name}.txt需要写成如下格式:
L
d
a
D
R
n
word_dict.txt 每行有一个单字,将字符与数字索引映射在一起,“and” 将被映射成 [2 5 1]
`ppocr/utils/ppocr_keys_v1.txt`
是一个包含6623个字符的中文字典,
`ppocr/utils/ic15_dict.txt`
是一个包含36个字符的英文字典,
您可以按需使用。如需自定义dic文件,请修改
`configs/rec/rec_icdar15_train.yml`
中的
`character_dict_path`
字段。
### 启动训练
PaddleOCR提供了训练脚本、评估脚本和预测脚本,本节将以RCNN中文识别模型为例:
```
# 设置PYTHONPATH路径
export PYTHONPATH=$PYTHONPATH:.
# GPU训练 支持单卡,多卡训练,通过CUDA_VISIBLE_DEVICES指定卡号
export CUDA_VISIBLE_DEVICES=0,1,2,3
python tools/train.py -c configs/rec/rec_icdar15_train.yml
```
PaddleOCR支持训练和评估交替进行, 可以在
`configs/rec/rec_icdar15_train.yml`
中修改
`eval_batch_step`
设置评估频率,默认每2000个iter评估一次。评估过程中默认将最佳acc模型,保存为
`output/rec/best_accuracy`
。
如果验证集很大,测试将会比较耗时,建议减少评估次数,或训练完再进行评估。
### 评估
评估数据集可以通过
`configs/rec/rec_icdar15_reader.yml`
修改EvalReader中的
`label_file_path`
设置。
```
export CUDA_VISIBLE_DEVICES=0
# GPU 评估, Global.pretrain_weights 为待测权重
python tools/eval.py -c configs/rec/rec_chinese_lite_train.yml -o Global.pretrain_weights={path/to/weights}/best_accuracy
```
### 测试
*
训练引擎的预测
PaddleOCR 提供了训练好的中文模型,可以使用
默认预测图片存储在
`infer_img`
里,通过 Global.pretrain_weights 指定权重:
```
python tools/infer_rec.py -c configs/rec/rec_chinese_lite_train.yml -o Global.pretrain_weights={path/to/weights}/best_accuracy
```
得到输入图像的预测结果:
```
infer_img: infer_img/328_4.jpg
# 字符在字典中的索引
[1863 921 55 155 1863 4209 3344 486 914 1863 4918]
# 预测结果
冷库专用冷冻液/载冷剂
```
得到预测结果后,脚本会自动将权重转换为inference model 并保存在 rec_inference 下:
|-rec_inference
|- model
|- params
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录