提交 5ea613dc 编写于 作者: T tink2123

use pretrained_model for eval

上级 c7be8856
......@@ -108,9 +108,9 @@ PaddleOCR计算三个OCR检测相关的指标,分别是:Precision、Recall
运行如下代码,根据配置文件`det_db_mv3.yml``save_res_path`指定的测试集检测结果文件,计算评估指标。
评估时设置后处理参数`box_thresh=0.5``unclip_ratio=1.5`,使用不同数据集、不同模型训练,可调整这两个参数进行优化
训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.checkpoints`指向保存的参数文件。
训练中模型参数默认保存在`Global.save_model_dir`目录下。在评估指标时,需要设置`Global.pretrained_model`指向保存的参数文件。
```shell
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.5 PostProcess.unclip_ratio=1.5
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.5 PostProcess.unclip_ratio=1.5
```
......
......@@ -420,8 +420,8 @@ Eval:
评估数据集可以通过 `configs/rec/rec_icdar15_train.yml` 修改Eval中的 `label_file_path` 设置。
```
# GPU 评估, Global.checkpoints 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
# GPU 评估, Global.pretrained_model 为待测权重
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
<a name="预测"></a>
......@@ -432,7 +432,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
使用 PaddleOCR 训练好的模型,可以通过以下脚本进行快速预测。
默认预测图片存储在 `infer_img` 里,通过 `-o Global.checkpoints` 指定权重:
默认预测图片存储在 `infer_img` 里,通过 `-o Global.pretrained_model` 指定权重:
```
# 预测英文结果
......
......@@ -101,9 +101,9 @@ Run the following code to calculate the evaluation indicators. The result will b
When evaluating, set post-processing parameters `box_thresh=0.6`, `unclip_ratio=1.5`. If you use different datasets, different models for training, these two parameters should be adjusted for better result.
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.checkpoints` to point to the saved parameter file.
The model parameters during training are saved in the `Global.save_model_dir` directory by default. When evaluating indicators, you need to set `Global.pretrained_model` to point to the saved parameter file.
```shell
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.checkpoints="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
python3 tools/eval.py -c configs/det/det_mv3_db.yml -o Global.pretrained_model="{path/to/weights}/best_accuracy" PostProcess.box_thresh=0.6 PostProcess.unclip_ratio=1.5
```
......
......@@ -425,8 +425,8 @@ Eval:
The evaluation dataset can be set by modifying the `Eval.dataset.label_file_list` field in the `configs/rec/rec_icdar15_train.yml` file.
```
# GPU evaluation, Global.checkpoints is the weight to be tested
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.checkpoints={path/to/weights}/best_accuracy
# GPU evaluation, Global.pretrained_model is the weight to be tested
python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec_icdar15_train.yml -o Global.pretrained_model={path/to/weights}/best_accuracy
```
<a name="PREDICTION"></a>
......@@ -437,7 +437,7 @@ python3 -m paddle.distributed.launch --gpus '0' tools/eval.py -c configs/rec/rec
Using the model trained by paddleocr, you can quickly get prediction through the following script.
The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.checkpoints`:
The default prediction picture is stored in `infer_img`, and the weight is specified via `-o Global.pretrained_model`:
```
# Predict English results
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册