Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
533f276a
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
1 年多 前同步成功
通知
1534
Star
32963
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
533f276a
编写于
10月 19, 2022
作者:
Z
zhoujun
提交者:
GitHub
10月 19, 2022
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #7978 from WenmuZhou/tipc3
[TIPC] fix pact bug in slanet
上级
5f8eca85
4cf04cbe
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
47 addition
and
42 deletion
+47
-42
ppstructure/kie/requirements.txt
ppstructure/kie/requirements.txt
+1
-1
ppstructure/table/predict_structure.py
ppstructure/table/predict_structure.py
+32
-0
ppstructure/table/predict_table.py
ppstructure/table/predict_table.py
+9
-37
test_tipc/configs/layoutxlm_ser/train_pact_infer_python.txt
test_tipc/configs/layoutxlm_ser/train_pact_infer_python.txt
+2
-2
test_tipc/configs/slanet/train_pact_infer_python.txt
test_tipc/configs/slanet/train_pact_infer_python.txt
+1
-1
test_tipc/prepare.sh
test_tipc/prepare.sh
+2
-1
未找到文件。
ppstructure/kie/requirements.txt
浏览文件 @
533f276a
...
...
@@ -4,4 +4,4 @@ seqeval
pypandoc
attrdict
python_docx
https://paddleocr.bj.bcebos.com/ppstructure/whl/paddlenlp-2.3.0.dev0-py3-none-any.whl
paddlenlp>=2.4.1
ppstructure/table/predict_structure.py
浏览文件 @
533f276a
...
...
@@ -68,6 +68,7 @@ def build_pre_process_list(args):
class
TableStructurer
(
object
):
def
__init__
(
self
,
args
):
self
.
args
=
args
self
.
use_onnx
=
args
.
use_onnx
pre_process_list
=
build_pre_process_list
(
args
)
if
args
.
table_algorithm
not
in
[
'TableMaster'
]:
...
...
@@ -89,8 +90,31 @@ class TableStructurer(object):
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
self
.
config
=
\
utility
.
create_predictor
(
args
,
'table'
,
logger
)
if
args
.
benchmark
:
import
auto_log
pid
=
os
.
getpid
()
gpu_id
=
utility
.
get_infer_gpuid
()
self
.
autolog
=
auto_log
.
AutoLogger
(
model_name
=
"table"
,
model_precision
=
args
.
precision
,
batch_size
=
1
,
data_shape
=
"dynamic"
,
save_path
=
None
,
#args.save_log_path,
inference_config
=
self
.
config
,
pids
=
pid
,
process_name
=
None
,
gpu_ids
=
gpu_id
if
args
.
use_gpu
else
None
,
time_keys
=
[
'preprocess_time'
,
'inference_time'
,
'postprocess_time'
],
warmup
=
0
,
logger
=
logger
)
def
__call__
(
self
,
img
):
starttime
=
time
.
time
()
if
self
.
args
.
benchmark
:
self
.
autolog
.
times
.
start
()
ori_im
=
img
.
copy
()
data
=
{
'image'
:
img
}
data
=
transform
(
data
,
self
.
preprocess_op
)
...
...
@@ -99,6 +123,8 @@ class TableStructurer(object):
return
None
,
0
img
=
np
.
expand_dims
(
img
,
axis
=
0
)
img
=
img
.
copy
()
if
self
.
args
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
if
self
.
use_onnx
:
input_dict
=
{}
input_dict
[
self
.
input_tensor
.
name
]
=
img
...
...
@@ -110,6 +136,8 @@ class TableStructurer(object):
for
output_tensor
in
self
.
output_tensors
:
output
=
output_tensor
.
copy_to_cpu
()
outputs
.
append
(
output
)
if
self
.
args
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
preds
=
{}
preds
[
'structure_probs'
]
=
outputs
[
1
]
...
...
@@ -125,6 +153,8 @@ class TableStructurer(object):
'<html>'
,
'<body>'
,
'<table>'
]
+
structure_str_list
+
[
'</table>'
,
'</body>'
,
'</html>'
]
elapse
=
time
.
time
()
-
starttime
if
self
.
args
.
benchmark
:
self
.
autolog
.
times
.
end
(
stamp
=
True
)
return
(
structure_str_list
,
bbox_list
),
elapse
...
...
@@ -164,6 +194,8 @@ def main(args):
total_time
+=
elapse
count
+=
1
logger
.
info
(
"Predict time of {}: {}"
.
format
(
image_file
,
elapse
))
if
args
.
benchmark
:
table_structurer
.
autolog
.
report
()
if
__name__
==
"__main__"
:
...
...
ppstructure/table/predict_table.py
浏览文件 @
533f276a
...
...
@@ -14,7 +14,6 @@
import
os
import
sys
import
subprocess
__dir__
=
os
.
path
.
dirname
(
os
.
path
.
abspath
(
__file__
))
sys
.
path
.
append
(
__dir__
)
...
...
@@ -58,48 +57,28 @@ def expand(pix, det_box, shape):
class
TableSystem
(
object
):
def
__init__
(
self
,
args
,
text_detector
=
None
,
text_recognizer
=
None
):
self
.
args
=
args
if
not
args
.
show_log
:
logger
.
setLevel
(
logging
.
INFO
)
self
.
text_detector
=
predict_det
.
TextDetector
(
args
)
if
text_detector
is
None
else
text_detector
self
.
text_recognizer
=
predict_rec
.
TextRecognizer
(
args
)
if
text_recognizer
is
None
else
text_recognizer
args
.
benchmark
=
False
self
.
text_detector
=
predict_det
.
TextDetector
(
copy
.
deepcopy
(
args
)
)
if
text_detector
is
None
else
text_detector
self
.
text_recognizer
=
predict_rec
.
TextRecognizer
(
copy
.
deepcopy
(
args
)
)
if
text_recognizer
is
None
else
text_recognizer
args
.
benchmark
=
True
self
.
table_structurer
=
predict_strture
.
TableStructurer
(
args
)
if
args
.
table_algorithm
in
[
'TableMaster'
]:
self
.
match
=
TableMasterMatcher
()
else
:
self
.
match
=
TableMatch
(
filter_ocr_result
=
True
)
self
.
benchmark
=
args
.
benchmark
self
.
predictor
,
self
.
input_tensor
,
self
.
output_tensors
,
self
.
config
=
utility
.
create_predictor
(
args
,
'table'
,
logger
)
if
args
.
benchmark
:
import
auto_log
pid
=
os
.
getpid
()
gpu_id
=
utility
.
get_infer_gpuid
()
self
.
autolog
=
auto_log
.
AutoLogger
(
model_name
=
"table"
,
model_precision
=
args
.
precision
,
batch_size
=
1
,
data_shape
=
"dynamic"
,
save_path
=
None
,
#args.save_log_path,
inference_config
=
self
.
config
,
pids
=
pid
,
process_name
=
None
,
gpu_ids
=
gpu_id
if
args
.
use_gpu
else
None
,
time_keys
=
[
'preprocess_time'
,
'inference_time'
,
'postprocess_time'
],
warmup
=
0
,
logger
=
logger
)
def
__call__
(
self
,
img
,
return_ocr_result_in_table
=
False
):
result
=
dict
()
time_dict
=
{
'det'
:
0
,
'rec'
:
0
,
'table'
:
0
,
'all'
:
0
,
'match'
:
0
}
start
=
time
.
time
()
structure_res
,
elapse
=
self
.
_structure
(
copy
.
deepcopy
(
img
))
result
[
'cell_bbox'
]
=
structure_res
[
1
].
tolist
()
time_dict
[
'table'
]
=
elapse
...
...
@@ -118,24 +97,16 @@ class TableSystem(object):
toc
=
time
.
time
()
time_dict
[
'match'
]
=
toc
-
tic
result
[
'html'
]
=
pred_html
if
self
.
benchmark
:
self
.
autolog
.
times
.
end
(
stamp
=
True
)
end
=
time
.
time
()
time_dict
[
'all'
]
=
end
-
start
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
return
result
,
time_dict
def
_structure
(
self
,
img
):
if
self
.
benchmark
:
self
.
autolog
.
times
.
start
()
structure_res
,
elapse
=
self
.
table_structurer
(
copy
.
deepcopy
(
img
))
return
structure_res
,
elapse
def
_ocr
(
self
,
img
):
h
,
w
=
img
.
shape
[:
2
]
if
self
.
benchmark
:
self
.
autolog
.
times
.
stamp
()
dt_boxes
,
det_elapse
=
self
.
text_detector
(
copy
.
deepcopy
(
img
))
dt_boxes
=
sorted_boxes
(
dt_boxes
)
...
...
@@ -233,12 +204,13 @@ def main(args):
f_html
.
close
()
if
args
.
benchmark
:
t
ext_sys
.
autolog
.
report
()
t
able_sys
.
table_structurer
.
autolog
.
report
()
if
__name__
==
"__main__"
:
args
=
parse_args
()
if
args
.
use_mp
:
import
subprocess
p_list
=
[]
total_process_num
=
args
.
total_process_num
for
process_id
in
range
(
total_process_num
):
...
...
test_tipc/configs/layoutxlm_ser/train_pact_infer_python.txt
浏览文件 @
533f276a
...
...
@@ -7,14 +7,14 @@ Global.auto_cast:fp32
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=17
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=4|whole_train_whole_infer=8
Architecture.Backbone.
checkpoints
:pretrain_models/ser_LayoutXLM_xfun_zh
Architecture.Backbone.
pretrained
:pretrain_models/ser_LayoutXLM_xfun_zh
train_model_name:latest
train_infer_img_dir:ppstructure/docs/kie/input/zh_val_42.jpg
null:null
##
trainer:pact_train
norm_train:null
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/layoutxlm_ser/ser_layoutxlm_xfund_zh.yml -o
pact_train:deploy/slim/quantization/quant.py -c test_tipc/configs/layoutxlm_ser/ser_layoutxlm_xfund_zh.yml -o
Global.eval_batch_step=[2000,10]
fpgm_train:null
distill_train:null
null:null
...
...
test_tipc/configs/slanet/train_pact_infer_python.txt
浏览文件 @
533f276a
...
...
@@ -34,7 +34,7 @@ distill_export:null
export1:null
export2:null
##
infer_model:./inference/en_pp
ocr_mobile_v2.0_table_structure
_infer
infer_model:./inference/en_pp
structure_mobile_v2.0_SLANet
_infer
infer_export:null
infer_quant:True
inference:ppstructure/table/predict_table.py --det_model_dir=./inference/en_ppocr_mobile_v2.0_table_det_infer --rec_model_dir=./inference/en_ppocr_mobile_v2.0_table_rec_infer --rec_char_dict_path=./ppocr/utils/dict/table_dict.txt --table_char_dict_path=./ppocr/utils/dict/table_structure_dict.txt --image_dir=./ppstructure/docs/table/table.jpg --det_limit_side_len=736 --det_limit_type=min --output ./output/table
...
...
test_tipc/prepare.sh
浏览文件 @
533f276a
...
...
@@ -146,6 +146,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
python_name
=
${
array
[0]
}
${
python_name
}
-m
pip
install
-r
requirements.txt
${
python_name
}
-m
pip
install
https://paddleocr.bj.bcebos.com/libs/auto_log-1.2.0-py3-none-any.whl
${
python_name
}
-m
pip
install
paddleslim
==
2.3.4
# pretrain lite train data
wget
-nc
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
--no-check-certificate
wget
-nc
-P
./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar
--no-check-certificate
...
...
@@ -260,7 +261,7 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget
-nc
-P
./pretrain_models/ https://paddleocr.bj.bcebos.com/rec_r32_gaspin_bilstm_att_train.tar
--no-check-certificate
cd
./pretrain_models/
&&
tar
xf rec_r32_gaspin_bilstm_att_train.tar
&&
cd
../
fi
if
[
${
model_name
}
==
"layoutxlm_ser"
]
;
then
if
[
[
${
model_name
}
=
~
"layoutxlm_ser"
]
]
;
then
${
python_name
}
-m
pip
install
-r
ppstructure/kie/requirements.txt
${
python_name
}
-m
pip
install
opencv-python
-U
wget
-nc
-P
./train_data/ https://paddleocr.bj.bcebos.com/ppstructure/dataset/XFUND.tar
--no-check-certificate
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录