提交 50c1452f 编写于 作者: qq_25193841's avatar qq_25193841

Merge remote-tracking branch 'origin/dygraph' into dygraph

......@@ -17,8 +17,19 @@ English | [简体中文](README_ch.md)
PaddleOCR aims to create multilingual, awesome, leading, and practical OCR tools that help users train better models and apply them into practice.
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
</div>
**Recent updates**
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00018069.jpg" width="800">
</div>
## Recent updates
- 2022.5.9 release PaddleOCR v2.5, including:
- [PP-OCRv3](./doc/doc_en/ppocr_introduction_en.md#pp-ocrv3): With comparable speed, the effect of Chinese scene is further improved by 5% compared with PP-OCRv2, the effect of English scene is improved by 11%, and the average recognition accuracy of 80 language multilingual models is improved by more than 5%.
- [PPOCRLabelv2](./PPOCRLabel): Add the annotation function for table recognition task, key information extraction task and irregular text image.
- Interactive e-book [*"Dive into OCR"*](./doc/doc_en/ocr_book_en.md), covers the cutting-edge theory and code practice of OCR full stack technology.
- 2021.12.21 release PaddleOCR v2.4, release 1 text detection algorithm (PSENet), 3 text recognition algorithms (NRTR、SEED、SAR), 1 key information extraction algorithm (SDMGR, [tutorial](./ppstructure/docs/kie_en.md)) and 3 DocVQA algorithms (LayoutLM, LayoutLMv2, LayoutXLM, [tutorial](./ppstructure/vqa)).
- 2021.9.7 release PaddleOCR v2.3, [PP-OCRv2](./doc/doc_en/ppocr_introduction_en.md#pp-ocrv2) is proposed. The inference speed of PP-OCRv2 is 220% higher than that of PP-OCR server in CPU device. The F-score of PP-OCRv2 is 7% higher than that of PP-OCR mobile.
- 2021.8.3 released PaddleOCR v2.2, add a new structured documents analysis toolkit, i.e., [PP-Structure](./ppstructure/README.md), support layout analysis and table recognition (One-key to export chart images to Excel files).
......@@ -122,6 +133,9 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
- [General OCR Datasets(Chinese/English)](doc/doc_en/dataset/datasets_en.md)
- [HandWritten_OCR_Datasets(Chinese)](doc/doc_en/dataset/handwritten_datasets_en.md)
- [Various OCR Datasets(multilingual)](doc/doc_en/dataset/vertical_and_multilingual_datasets_en.md)
- [layout analysis](doc/doc_en/dataset/layout_datasets_en.md)
- [table recognition](doc/doc_en/dataset/table_datasets_en.md)
- [DocVQA](doc/doc_en/dataset/docvqa_datasets_en.md)
- [Code Structure](./doc/doc_en/tree_en.md)
- [Visualization](#Visualization)
- [Community](#Community)
......@@ -133,25 +147,51 @@ PaddleOCR support a variety of cutting-edge algorithms related to OCR, and devel
<a name="Visualization"></a>
## Visualization [more](./doc/doc_en/visualization_en.md)
- Chinese OCR model
<details open>
<summary>PP-OCRv2 Chinese model</summary>
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/test_add_91.jpg" width="800">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00015504.jpg" width="800">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/00056221.jpg" width="800">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/rotate_00052204.jpg" width="800">
</div>
</details>
- English OCR model
<details open>
<summary>PP-OCRv2 English model</summary>
<div align="center">
<img src="./doc/imgs_results/ch_ppocr_mobile_v2.0/img_12.jpg" width="800">
</div>
</details>
- Multilingual OCR model
<details open>
<summary>PP-OCRv2 Multilingual model</summary>
<div align="center">
<img src="./doc/imgs_results/french_0.jpg" width="800">
<img src="./doc/imgs_results/korean.jpg" width="800">
</div>
</details>
<details open>
<summary>PP-Structure</summary>
- layout analysis + table recognition
<div align="center">
<img src="./ppstructure/docs/table/ppstructure.GIF" width="800">
</div>
- SER (Semantic entity recognition)
<div align="center">
<img src="./ppstructure/docs/vqa/result_ser/zh_val_0_ser.jpg" width="800">
</div>
- RE (Relation Extraction)
<div align="center">
<img src="./ppstructure/docs/vqa/result_re/zh_val_21_re.jpg" width="800">
</div>
</details>
<a name="language_requests"></a>
## Guideline for New Language Requests
......
......@@ -27,6 +27,11 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
## 近期更新
- 2022.5.9 发布PaddleOCR v2.5。发布内容包括:
- [PP-OCRv3](./doc/doc_ch/ppocr_introduction.md#pp-ocrv3),速度可比情况下,中文场景效果相比于PP-OCRv2再提升5%,英文场景提升11%,80语种多语言模型平均识别准确率提升5%以上;
- 半自动标注工具[PPOCRLabelv2](./PPOCRLabel):新增表格文字图像、图像关键信息抽取任务和不规则文字图像的标注功能;
- OCR产业落地工具集:打通22种训练部署软硬件环境与方式,覆盖企业90%的训练部署环境需求
- 交互式OCR开源电子书[《动手学OCR》](./doc/doc_ch/ocr_book.md),覆盖OCR全栈技术的前沿理论与代码实践,并配套教学视频。
- 2021.12.21 发布PaddleOCR v2.4。OCR算法新增1种文本检测算法(PSENet),3种文本识别算法(NRTR、SEED、SAR);文档结构化算法新增1种关键信息提取算法(SDMGR,[文档](./ppstructure/docs/kie.md)),3种DocVQA算法(LayoutLM、LayoutLMv2,LayoutXLM,[文档](./ppstructure/vqa))。
- 2021.9.7 发布PaddleOCR v2.3与[PP-OCRv2](./doc/doc_ch/ppocr_introduction.md#pp-ocrv2),CPU推理速度相比于PP-OCR server提升220%;效果相比于PP-OCR mobile 提升7%。
- 2021.8.3 发布PaddleOCR v2.2,新增文档结构分析[PP-Structure](./ppstructure/README_ch.md)工具包,支持版面分析与表格识别(含Excel导出)。
......
......@@ -155,7 +155,7 @@ SVTR_Tiny 网络结构如下所示:
**(2)GTC:Attention指导CTC训练策略**
[GTC](https://arxiv.org/pdf/2002.01276.pdf)(Guided Training of CTC),利用Attention模块以及损失,指导CTC损失训练,融合多种文本特征的表达,是一种有效的提升文本识别的策略。使用该策略,预测时完全去除 Attention 模块,在推理阶段不增加任何耗时,识别模型的准确率进一步提升到75.8%(+1.82%)。训练流程如下所示:
[GTC](https://arxiv.org/pdf/2002.01276.pdf)(Guided Training of CTC),利用Attention模块CTC训练,融合多种文本特征的表达,是一种有效的提升文本识别的策略。使用该策略,预测时完全去除 Attention 模块,在推理阶段不增加任何耗时,识别模型的准确率进一步提升到75.8%(+1.82%)。训练流程如下所示:
<div align="center">
<img src="../ppocr_v3/GTC.png" width=800>
</div>
......
# 更新
- 2022.5.9 发布PaddleOCR v2.5。发布内容包括:
- [PP-OCRv3](./doc/doc_ch/ppocr_introduction.md#pp-ocrv3),速度可比情况下,中文场景效果相比于PP-OCRv2再提升5%,英文场景提升11%,80语种多语言模型平均识别准确率提升5%以上;
- 半自动标注工具[PPOCRLabelv2](./PPOCRLabel):新增表格文字图像、图像关键信息抽取任务和不规则文字图像的标注功能;
- OCR产业落地工具集:打通22种训练部署软硬件环境与方式,覆盖企业90%的训练部署环境需求
- 交互式OCR开源电子书[《动手学OCR》](./doc/doc_ch/ocr_book.md),覆盖OCR全栈技术的前沿理论与代码实践,并配套教学视频。
- 2022.5.7 添加对[Weights & Biases](https://docs.wandb.ai/)训练日志记录工具的支持。
- 2021.12.21 《OCR十讲》课程开讲,12月21日起每晚八点半线上授课! 【免费】报名地址:https://aistudio.baidu.com/aistudio/course/introduce/25207
- 2021.12.21 发布PaddleOCR v2.4。OCR算法新增1种文本检测算法(PSENet),3种文本识别算法(NRTR、SEED、SAR);文档结构化算法新增1种关键信息提取算法(SDMGR),3种DocVQA算法(LayoutLM、LayoutLMv2,LayoutXLM)。
......
English | [简体中文](../doc_ch/PP-OCRv3_introduction.md)
# PP-OCRv3
- [1. Introduction](#1)
- [2. Optimization for Text Detection Model](#2)
- [3. Optimization for Text Recognition Model](#3)
- [4. End-to-end Evaluation](#4)
<a name="1"></a>
## 1. Introduction
PP-OCRv3 is further upgraded on the basis of PP-OCRv2. The overall framework of PP-OCRv3 is same as that of PP-OCRv2. The text detection model and text recognition model are further optimized, respectively. Specifically, the detection network is still optimized based on DBNet, and base model of recognition network is replaced from CRNN to [SVTR](https://arxiv.org/abs/2205.00159), which is recorded in IJCAI 2022. The block diagram of the PP-OCRv3 system is as follows (strategies in the pink box are newly introduced in PP-OCRv3):
<div align="center">
<img src="../ppocrv3_framework.png" width="800">
</div>
There are 9 optimization strategies for text detection and recognition models in PP-OCRv3, which are as follows.
- Text detection:
- LK-PAN: A PAN structure with large receptive field;
- DML: Deep Mutual Learning strategy for teacher model;
- RSE-FPN: A FPN structure with residual attention mechanism;
- Text recognition:
- SVTR_LCNet: A Light-weight text recognition network;
- GTC: Guided training of CTC by Attention;
- TextConAug: A data augmentation strategy for mining textual context information;
- TextRotNet: Self-supervised strategy for a better pretrained model;
- UDML: Unified deep mutual learning strategy;
- UIM: Unlabeled data mining strategy.
In terms of effect, when the speed is comparable, the accuracy of various scenes is greatly improved:
- In Chinese scenarios, PP-OCRv3 outperforms PP-OCRv2 by more than 5%.
- In English scenarios, PP-OCRv3 outperforms PP-OCRv2 by more than 11%.
- In multi-language scenarios, models for more than 80 languages are optimized, the average accuracy is increased by more than 5%.
<a name="2"></a>
## 2. Optimization for Text Detection Model
The PP-OCRv3 detection model upgrades the [CML](https://arxiv.org/pdf/2109.03144.pdf) (Collaborative Mutual Learning) distillation strategy proposed in PP-OCRv2. As shown in the figure below, the main idea of CML combines ① the traditional distillation strategy of Teacher guiding Student and ② the DML strategy, which allows the Students network to learn from each other. PP-OCRv3 further optimizes the effect of teacher model and student model respectively. For the Teacher model, a pan module with large receptive field named LK-PAN is proposed and the DML distillation strategy is adopted; for the student model, a FPN module with residual attention mechanism named RSE-FPN is proposed.
<div align="center">
<img src=".././ppocr_v3/ppocrv3_det_cml.png" width="800">
</div>
The ablation experiments are as follows:
|ID|Strategy|Model Size|Hmean|The Inference Time(cpu + mkldnn)|
|-|-|-|-|-|
|baseline teacher|PP-OCR server|49M|83.2%|171ms|
|teacher1|DB-R50-LK-PAN|124M|85.0%|396ms|
|teacher2|DB-R50-LK-PAN-DML|124M|86.0%|396ms|
|baseline student|PP-OCRv2|3M|83.2%|117ms|
|student0|DB-MV3-RSE-FPN|3.6M|84.5%|124ms|
|student1|DB-MV3-CML(teacher2)|3M|84.3%|117ms|
|student2|DB-MV3-RSE-FPN-CML(teacher2)|3.6M|85.4%|124ms|
Testing environment: Intel Gold 6148 CPU, with MKLDNN acceleration enabled during inference.
**(1) LK-PAN: A PAN structure with large receptive field**
LK-PAN (Large Kernel PAN) is a lightweight [PAN](https://arxiv.org/pdf/1803.01534.pdf) structure with larger receptive field. The main idea is to change the convolution kernel size in the path augmentation of the PAN structure from `3*3` to `9*9`. By increasing the convolution kernel size, the receptive field of each position of the feature map is improved, making it easier to detect text in large fonts and text with extreme aspect ratios. Using LK-PAN, the hmean of the teacher model can be improved from 83.2% to 85.0%.
<div align="center">
<img src="../ppocr_v3/LKPAN.png" width="1000">
</div>
**(2) DML: Deep Mutual Learning Strategy for Teacher Model**
[DML](https://arxiv.org/abs/1706.00384)(Collaborative Mutual Learning), as shown in the figure below, can effectively improve the accuracy of the text detection model by learning from each other with two models with the same structure. The DML strategy is adopted in the teacher model training, and the hmean is increased from 85% to 86%. By updating the teacher model of CML in PP-OCRv2 to the above-mentioned higher-precision one, the hmean of the student model can be further improved from 83.2% to 84.3%.
<div align="center">
<img src="../ppocr_v3/teacher_dml.png" width="800">
</div>
**(3) RSE-FPN: A FPN structure with residual attention mechanism**
RSE-FPN (Residual Squeeze-and-Excitation FPN) is shown in the figure below. RSE-FPN introduces residual attention mechanism by replacing the convolutional layer in the FPN with RSEConv, to improve the representation ability of the feature map.
Considering that the features of some channels will be suppressed if the convolution layer in FPN is directly replaced with SEblock, as the number of FPN channels in the detection model of PP-OCRv2 is 96, which is very small. The introduction of residual structure in RSEConv can alleviate the above problems and improve the text detection effect. By updating the FPN structure of the student model of CML to RSE-FPN, the hmean of the student model can be further improved from 84.3% to 85.4%.
<div align="center">
<img src=".././ppocr_v3/RSEFPN.png" width="1000">
</div>
<a name="3"></a>
## 3. Optimization for Text Recognition Model
The recognition module of PP-OCRv3 is optimized based on the text recognition algorithm [SVTR](https://arxiv.org/abs/2205.00159). RNN is abandoned in SVTR, and the context information of the text line image is more effectively mined by introducing the Transformers structure, thereby improving the text recognition ability.
The recognition accuracy of SVTR_inty outperforms PP-OCRv2 recognition model by 5.3%, while the prediction speed nearly 11 times slower. It takes nearly 100ms to predict a text line on CPU. Therefore, as shown in the figure below, PP-OCRv3 adopts the following six optimization strategies to accelerate the recognition model.
<div align="center">
<img src="../ppocr_v3/v3_rec_pipeline.png" width=800>
</div>
Based on the above strategy, compared with PP-OCRv2, the PP-OCRv3 recognition model further improves the accuracy by 4.6% with comparable speed. The ablation experiments are as follows:
| ID | strategy | Model size | accuracy | prediction speed(CPU + MKLDNN)|
|-----|-----|--------|----| --- |
| 01 | PP-OCRv2 | 8M | 74.8% | 8.54ms |
| 02 | SVTR_Tiny | 21M | 80.1% | 97ms |
| 03 | SVTR_LCNet(h32) | 12M | 71.9% | 6.6ms |
| 04 | SVTR_LCNet(h48) | 12M | 73.98% | 7.6ms |
| 05 | + GTC | 12M | 75.8% | 7.6ms |
| 06 | + TextConAug | 12M | 76.3% | 7.6ms |
| 07 | + TextRotNet | 12M | 76.9% | 7.6ms |
| 08 | + UDML | 12M | 78.4% | 7.6ms |
| 09 | + UIM | 12M | 79.4% | 7.6ms |
Note: When testing the speed, the input image shape of Experiment 01-03 is (3, 32, 320), and the input image shape of 04-08 is (3, 48, 320). In the actual prediction, the image is a variable-length input, and the speed will vary. Testing environment: Intel Gold 6148 CPU, with MKLDNN acceleration enabled during prediction.
**(1)SVTR_LCNet:Lightweight Text Recognition Network**
SVTR_LCNet is a lightweight text recognition network fused by Transformer-based network [SVTR](https://arxiv.org/abs/2205.00159) and lightweight CNN-based network [PP-LCNet](https://arxiv.org/abs/2109.15099). The prediction speed of SVTR_LCNet is 20% faster than that of PP-OCRv2 recognizer while the effect is slightly worse because the distillation strategy is not adopted. In addition, the height of the input image is further increased from 32 to 48, which makes the prediction speed slightly slower, but the model effect greatly improved. The recognition accuracy reaches 73.98% (+2.08%), which is close to the accuracy of PP-OCRv2 recognizer trained with the distillation strategy.
SVTR_Tiny network structure is as follows:
<div align="center">
<img src="../ppocr_v3/svtr_tiny.png" width=800>
</div>
Due to the limited model structure supported by the MKLDNN acceleration library, SVTR is 10 times slower than PP-OCRv2 on CPU+MKLDNN. PP-OCRv3 expects to improve the accuracy of the model without bringing additional inference time. Through analysis, it is found that the main time-consuming module of SVTR_Tiny structure is Mixing Block, so we have carried out a series of optimizations to the structure of SVTR_Tiny (for detailed speed data, please refer to the ablation experiment table below):
1. Replace the first half of the SVTR network with the first three stages of PP-LCNet, retain 4 Global Mixing Blocks, the accuracy is 76%, and the speedup is 69%. The network structure is as follows:
<div align="center">
<img src="../ppocr_v3/svtr_g4.png" width=800>
</div>
2. Reduce the number of Global Mixing Blocks from 4 to 2, the accuracy is 72.9%, and the speedup is 69%. The network structure is as follows:
<div align="center">
<img src="../ppocr_v3/svtr_g2.png" width=800>
</div>
3. The experiment found that the prediction speed of the Global Mixing Block is related to the shape of the input features. Therefore, after moving the position of the Global Mixing Block to the back of pooling layer, the accuracy dropped to 71.9%, and the speed surpassed the PP-OCRv2-baseline based on the CNN structure by 22%. The network structure is as follows:
<div align="center">
<img src="../ppocr_v3/LCNet_SVTR.png" width=800>
</div>
The ablation experiments are as follows:
| ID | strategy | Model size | accuracy | prediction speed(CPU + MKLDNN)|
|-----|-----|--------|----| --- |
| 01 | PP-OCRv2-baseline | 8M | 69.3% | 8.54ms |
| 02 | SVTR_Tiny | 21M | 80.1% | 97ms |
| 03 | SVTR_LCNet(G4) | 9.2M | 76% | 30ms |
| 04 | SVTR_LCNet(G2) | 13M | 72.98% | 9.37ms |
| 05 | SVTR_LCNet(h32) | 12M | 71.9% | 6.6ms |
| 06 | SVTR_LCNet(h48) | 12M | 73.98% | 7.6ms |
Note: When testing the speed, the input image shape of 01-05 are all (3, 32, 320); PP-OCRv2-baseline represents the model trained without distillation method
**(2)GTC:Attention guides CTC training strategy**
[GTC](https://arxiv.org/pdf/2002.01276.pdf) (Guided Training of CTC), using the Attention module to guide the training of CTC to fuse multiple features is an effective strategy to improve text recognition accuracy. No more time-consuming is added in the inference process as the Attention module is completely removed during prediction. The accuracy of the recognition model is further improved to 75.8% (+1.82%). The training process is as follows:
<div align="center">
<img src="../ppocr_v3/GTC.png" width=800>
</div>
**(3)TextConAug:Data Augmentation Strategy for Mining Text Context Information**
TextConAug is a data augmentation strategy for mining textual context information. The main idea comes from the paper [ConCLR](https://www.cse.cuhk.edu.hk/~byu/papers/C139-AAAI2022-ConCLR.pdf), in which the author proposes data augmentation strategy ConAug to concat 2 different images in a batch to form new images and perform self-supervised comparative learning. PP-OCRv3 applies this method to supervised learning tasks, and designs the TextConAug data augmentation method, which can enrich the context information of training data and improve the diversity of training data. Using this strategy, the accuracy of the recognition model is further improved to 76.3% (+0.5%). The schematic diagram of TextConAug is as follows:
<div align="center">
<img src="../ppocr_v3/recconaug.png" width=800>
</div>
**(4)TextRotNet:Self-Supervised Pre-trained Model**
TextRotNet is a pre-trained model trained with a large amount of unlabeled text line data in a self-supervised manner, refered to the paper [STR-Fewer-Labels](https://github.com/ku21fan/STR-Fewer-Labels). This model can initialize the weights of SVTR_LCNet, which helps the text recognition model to converge to a better position. Using this strategy, the accuracy of the recognition model is further improved to 76.9% (+0.6%). The TextRotNet training process is shown in the following figure:
<div align="center">
<img src="../ppocr_v3/SSL.png" width="500">
</div>
**(5)UDML:Unified-Deep Mutual Learning**
UDML (Unified-Deep Mutual Learning) is a strategy proposed in PP-OCRv2 which is very effective to improve the model accuracy. In PP-OCRv3, for two different structures SVTR_LCNet and Attention, the feature map of PP-LCNet, the output of the SVTR module and the output of the Attention module between them are simultaneously supervised and trained. Using this strategy, the accuracy of the recognition model is further improved to 78.4% (+1.5%).
**(6)UIM:Unlabeled Images Mining**
UIM (Unlabeled Images Mining) is a very simple unlabeled data mining strategy. The main idea is to use a high-precision text recognition model to predict unlabeled images to obtain pseudo-labels, and select samples with high prediction confidence as training data for training lightweight models. Using this strategy, the accuracy of the recognition model is further improved to 79.4% (+1%).
<div align="center">
<img src="../ppocr_v3/UIM.png" width="500">
</div>
<a name="4"></a>
## 4. End-to-end Evaluation
With the optimization strategies mentioned above, PP-OCRv3 outperforms PP-OCRv2 by 5% in terms of end-to-end Hmean for Chinese scenarios with comparable speed. The specific metrics are shown as follows.
| Model | Hmean | Model Size (M) | Time Cost (CPU, ms) | Time Cost (T4 GPU, ms) |
|-----|-----|--------|----| --- |
| PP-OCR mobile | 50.3% | 8.1 | 356 | 116 |
| PP-OCR server | 57.0% | 155.1 | 1056 | 200 |
| PP-OCRv2 | 57.6% | 11.6 | 330 | 111 |
| PP-OCRv3 | 62.9% | 15.6 | 331 | 86.64 |
Testing environment:
- CPU: Intel Gold 6148, and MKLDNN acceleration is enabled during CPU inference.
In addition to Chinese scenarios, the recognition model for English is also optimized with an increasement of 11% for end-to-end Hmean, which is shown as follows.
| Model | Recall | Precision | Hmean |
|-----|-----|--------|----|
| PP-OCR_en | 38.99% | 45.91% | 42.17% |
| PP-OCRv3_en | 50.95% | 55.53% | 53.14% |
At the same time, recognition models for more than 80 language are also upgraded. The accuracy of the four language families with evaluation sets is increased by more than 5% on average, which is shown as follows.
| Model | Latin | Arabic | Japanese | Korean |
|-----|-----|--------|----| --- |
| PP-OCR_mul | 69.6% | 40.5% | 38.5% | 55.4% |
| PP-OCRv3_mul | 75.2% | 45.37% | 45.8% | 60.1% |
# RECENT UPDATES
- 2022.5.9 release PaddleOCR v2.5, including:
- [PP-OCRv3](./doc/doc_en/ppocr_introduction_en.md#pp-ocrv3): With comparable speed, the effect of Chinese scene is further improved by 5% compared with PP-OCRv2, the effect of English scene is improved by 11%, and the average recognition accuracy of 80 language multilingual models is improved by more than 5%.
- [PPOCRLabelv2](./PPOCRLabel): Add the annotation function for table recognition task, key information extraction task and irregular text image.
- Interactive e-book [*"Dive into OCR"*](./doc/doc_en/ocr_book_en.md), covers the cutting-edge theory and code practice of OCR full stack technology.
- 2022.5.7 Add support for metric and model logging during training to [Weights & Biases](https://docs.wandb.ai/).
- 2021.12.21 OCR open source online course starts. The lesson starts at 8:30 every night and lasts for ten days. Free registration: https://aistudio.baidu.com/aistudio/course/introduce/25207
- 2021.12.21 release PaddleOCR v2.4, release 1 text detection algorithm (PSENet), 3 text recognition algorithms (NRTR、SEED、SAR), 1 key information extraction algorithm (SDMGR) and 3 DocVQA algorithms (LayoutLM、LayoutLMv2,LayoutXLM).
......
doc/features.png

1.4 MB | W: | H:

doc/features.png

1.1 MB | W: | H:

doc/features.png
doc/features.png
doc/features.png
doc/features.png
  • 2-up
  • Swipe
  • Onion skin
doc/features_en.png

1.4 MB | W: | H:

doc/features_en.png

1.2 MB | W: | H:

doc/features_en.png
doc/features_en.png
doc/features_en.png
doc/features_en.png
  • 2-up
  • Swipe
  • Onion skin
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册