提交 48a6ebad 编写于 作者: T tink2123

mind not support alg

上级 c6c39e87
......@@ -7,6 +7,7 @@
需要准备 Paddle2ONNX 模型转化环境,和 ONNX 模型预测环境
### Paddle2ONNX
Paddle2ONNX 支持将 PaddlePaddle 模型格式转化到 ONNX 模型格式,算子目前稳定支持导出 ONNX Opset 9~11,部分Paddle算子支持更低的ONNX Opset转换。
更多细节可参考 [Paddle2ONNX](https://github.com/PaddlePaddle/Paddle2ONNX/blob/develop/README_zh.md)
......@@ -51,6 +52,9 @@ paddle2onnx --model_dir=./inference/ch_ppocr_mobile_v2.0_det_infer/ \
执行完毕后,ONNX 模型会被保存在 `./inference/det_mobile_onnx/` 路径下
* 注意:以下几个模型暂不支持转换为 ONNX 模型:
NRTR、SAR、RARE、SRN
## 3. onnx 预测
以检测模型为例,使用 ONNX 预测可执行如下命令:
......@@ -69,4 +73,4 @@ The predict time of ../../doc/imgs/1.jpg: 0.06162881851196289
The visualized image saved in ./inference_results/det_res_1.jpg
```
* 注意:ONNX暂时不支持变长预测,因为需要将输入resize到固定输入,预测结果可能与直接使用Paddle预测有细微不同。
* 注意:ONNX暂时不支持变长预测,需要将输入resize到固定输入,预测结果可能与直接使用Paddle预测有细微不同。
......@@ -38,6 +38,7 @@ class TextE2E(object):
def __init__(self, args):
self.args = args
self.e2e_algorithm = args.e2e_algorithm
self.use_onnx = args.use_onnx
pre_process_list = [{
'E2EResizeForTest': {}
}, {
......@@ -106,21 +107,31 @@ class TextE2E(object):
img = img.copy()
starttime = time.time()
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
if self.e2e_algorithm == 'PGNet':
if self.use_onnx:
input_dict = {}
input_dict[self.input_tensor.name] = img
outputs = self.predictor.run(self.output_tensors, input_dict)
preds = {}
preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3]
else:
raise NotImplementedError
self.input_tensor.copy_from_cpu(img)
self.predictor.run()
outputs = []
for output_tensor in self.output_tensors:
output = output_tensor.copy_to_cpu()
outputs.append(output)
preds = {}
if self.e2e_algorithm == 'PGNet':
preds['f_border'] = outputs[0]
preds['f_char'] = outputs[1]
preds['f_direction'] = outputs[2]
preds['f_score'] = outputs[3]
else:
raise NotImplementedError
post_result = self.postprocess_op(preds, shape_list)
points, strs = post_result['points'], post_result['texts']
dt_boxes = self.filter_tag_det_res_only_clip(points, ori_im.shape)
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册