Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
37f22e3e
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
1 年多 前同步成功
通知
1533
Star
32963
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
37f22e3e
编写于
6月 23, 2022
作者:
T
Topdu
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rec_resnet45
上级
c503dc2f
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
149 addition
and
1 deletion
+149
-1
ppocr/modeling/backbones/__init__.py
ppocr/modeling/backbones/__init__.py
+2
-1
ppocr/modeling/backbones/rec_resnet_45.py
ppocr/modeling/backbones/rec_resnet_45.py
+147
-0
未找到文件。
ppocr/modeling/backbones/__init__.py
浏览文件 @
37f22e3e
...
...
@@ -27,7 +27,8 @@ def build_backbone(config, model_type):
from
.rec_resnet_fpn
import
ResNetFPN
from
.rec_mv1_enhance
import
MobileNetV1Enhance
from
.rec_nrtr_mtb
import
MTB
from
.rec_resnet
import
ResNet31
,
ResNet45
from
.rec_resnet_31
import
ResNet31
from
.rec_resnet_45
import
ResNet45
from
.rec_resnet_aster
import
ResNet_ASTER
from
.rec_micronet
import
MicroNet
from
.rec_efficientb3_pren
import
EfficientNetb3_PREN
...
...
ppocr/modeling/backbones/rec_resnet.py
→
ppocr/modeling/backbones/rec_resnet
_45
.py
浏览文件 @
37f22e3e
...
...
@@ -13,8 +13,7 @@
# limitations under the License.
"""
This code is refer from:
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/layers/conv_layer.py
https://github.com/open-mmlab/mmocr/blob/main/mmocr/models/textrecog/backbones/resnet31_ocr.py
https://github.com/FangShancheng/ABINet/tree/main/modules
"""
from
__future__
import
absolute_import
...
...
@@ -29,7 +28,7 @@ import paddle.nn.functional as F
import
numpy
as
np
import
math
__all__
=
[
"ResNet
31"
,
"ResNet
45"
]
__all__
=
[
"ResNet45"
]
def
conv1x1
(
in_planes
,
out_planes
,
stride
=
1
):
...
...
@@ -37,7 +36,7 @@ def conv1x1(in_planes, out_planes, stride=1):
in_planes
,
out_planes
,
kernel_size
=
1
,
stride
=
stride
,
stride
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
KaimingNormal
()),
bias_attr
=
False
)
...
...
@@ -84,138 +83,10 @@ class BasicBlock(nn.Layer):
return
out
class
ResNet31
(
nn
.
Layer
):
'''
Args:
in_channels (int): Number of channels of input image tensor.
layers (list[int]): List of BasicBlock number for each stage.
channels (list[int]): List of out_channels of Conv2d layer.
out_indices (None | Sequence[int]): Indices of output stages.
last_stage_pool (bool): If True, add `MaxPool2d` layer to last stage.
'''
def
__init__
(
self
,
in_channels
=
3
,
layers
=
[
1
,
2
,
5
,
3
],
channels
=
[
64
,
128
,
256
,
256
,
512
,
512
,
512
],
out_indices
=
None
,
last_stage_pool
=
False
):
super
(
ResNet31
,
self
).
__init__
()
assert
isinstance
(
in_channels
,
int
)
assert
isinstance
(
last_stage_pool
,
bool
)
self
.
out_indices
=
out_indices
self
.
last_stage_pool
=
last_stage_pool
# conv 1 (Conv Conv)
self
.
conv1_1
=
nn
.
Conv2D
(
in_channels
,
channels
[
0
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn1_1
=
nn
.
BatchNorm2D
(
channels
[
0
])
self
.
relu1_1
=
nn
.
ReLU
()
self
.
conv1_2
=
nn
.
Conv2D
(
channels
[
0
],
channels
[
1
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn1_2
=
nn
.
BatchNorm2D
(
channels
[
1
])
self
.
relu1_2
=
nn
.
ReLU
()
# conv 2 (Max-pooling, Residual block, Conv)
self
.
pool2
=
nn
.
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
block2
=
self
.
_make_layer
(
channels
[
1
],
channels
[
2
],
layers
[
0
])
self
.
conv2
=
nn
.
Conv2D
(
channels
[
2
],
channels
[
2
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn2
=
nn
.
BatchNorm2D
(
channels
[
2
])
self
.
relu2
=
nn
.
ReLU
()
# conv 3 (Max-pooling, Residual block, Conv)
self
.
pool3
=
nn
.
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
block3
=
self
.
_make_layer
(
channels
[
2
],
channels
[
3
],
layers
[
1
])
self
.
conv3
=
nn
.
Conv2D
(
channels
[
3
],
channels
[
3
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn3
=
nn
.
BatchNorm2D
(
channels
[
3
])
self
.
relu3
=
nn
.
ReLU
()
# conv 4 (Max-pooling, Residual block, Conv)
self
.
pool4
=
nn
.
MaxPool2D
(
kernel_size
=
(
2
,
1
),
stride
=
(
2
,
1
),
padding
=
0
,
ceil_mode
=
True
)
self
.
block4
=
self
.
_make_layer
(
channels
[
3
],
channels
[
4
],
layers
[
2
])
self
.
conv4
=
nn
.
Conv2D
(
channels
[
4
],
channels
[
4
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn4
=
nn
.
BatchNorm2D
(
channels
[
4
])
self
.
relu4
=
nn
.
ReLU
()
# conv 5 ((Max-pooling), Residual block, Conv)
self
.
pool5
=
None
if
self
.
last_stage_pool
:
self
.
pool5
=
nn
.
MaxPool2D
(
kernel_size
=
2
,
stride
=
2
,
padding
=
0
,
ceil_mode
=
True
)
self
.
block5
=
self
.
_make_layer
(
channels
[
4
],
channels
[
5
],
layers
[
3
])
self
.
conv5
=
nn
.
Conv2D
(
channels
[
5
],
channels
[
5
],
kernel_size
=
3
,
stride
=
1
,
padding
=
1
)
self
.
bn5
=
nn
.
BatchNorm2D
(
channels
[
5
])
self
.
relu5
=
nn
.
ReLU
()
self
.
out_channels
=
channels
[
-
1
]
def
_make_layer
(
self
,
input_channels
,
output_channels
,
blocks
):
layers
=
[]
for
_
in
range
(
blocks
):
downsample
=
None
if
input_channels
!=
output_channels
:
downsample
=
nn
.
Sequential
(
nn
.
Conv2D
(
input_channels
,
output_channels
,
kernel_size
=
1
,
stride
=
1
,
weight_attr
=
ParamAttr
(
initializer
=
KaimingNormal
()),
bias_attr
=
False
),
nn
.
BatchNorm2D
(
output_channels
),
)
layers
.
append
(
BasicBlock
(
input_channels
,
output_channels
,
downsample
=
downsample
))
input_channels
=
output_channels
return
nn
.
Sequential
(
*
layers
)
def
forward
(
self
,
x
):
x
=
self
.
conv1_1
(
x
)
x
=
self
.
bn1_1
(
x
)
x
=
self
.
relu1_1
(
x
)
x
=
self
.
conv1_2
(
x
)
x
=
self
.
bn1_2
(
x
)
x
=
self
.
relu1_2
(
x
)
outs
=
[]
for
i
in
range
(
4
):
layer_index
=
i
+
2
pool_layer
=
getattr
(
self
,
f
'pool
{
layer_index
}
'
)
block_layer
=
getattr
(
self
,
f
'block
{
layer_index
}
'
)
conv_layer
=
getattr
(
self
,
f
'conv
{
layer_index
}
'
)
bn_layer
=
getattr
(
self
,
f
'bn
{
layer_index
}
'
)
relu_layer
=
getattr
(
self
,
f
'relu
{
layer_index
}
'
)
if
pool_layer
is
not
None
:
x
=
pool_layer
(
x
)
x
=
block_layer
(
x
)
x
=
conv_layer
(
x
)
x
=
bn_layer
(
x
)
x
=
relu_layer
(
x
)
outs
.
append
(
x
)
if
self
.
out_indices
is
not
None
:
return
tuple
([
outs
[
i
]
for
i
in
self
.
out_indices
])
return
x
class
ResNet
(
nn
.
Layer
):
def
__init__
(
self
,
block
,
layers
,
in_channels
=
3
):
class
ResNet45
(
nn
.
Layer
):
def
__init__
(
self
,
block
=
BasicBlock
,
layers
=
[
3
,
4
,
6
,
6
,
3
],
in_channels
=
3
):
self
.
inplanes
=
32
super
(
ResNet
,
self
).
__init__
()
super
(
ResNet
45
,
self
).
__init__
()
self
.
conv1
=
nn
.
Conv2D
(
3
,
32
,
...
...
@@ -274,7 +145,3 @@ class ResNet(nn.Layer):
x
=
self
.
layer4
(
x
)
x
=
self
.
layer5
(
x
)
return
x
def
ResNet45
(
in_channels
=
3
):
return
ResNet
(
BasicBlock
,
[
3
,
4
,
6
,
6
,
3
],
in_channels
=
in_channels
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录