未验证 提交 30631d22 编写于 作者: M MissPenguin 提交者: GitHub

Merge pull request #1059 from MissPenguin/develop

update pdserving
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
import requests
import json
import cv2
import base64
import os, sys
import time
def cv2_to_base64(image):
#data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(image).decode(
'utf8') #data.tostring()).decode('utf8')
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:9292/ocr/prediction"
test_img_dir = "../../doc/imgs_words/ch/"
for img_file in os.listdir(test_img_dir):
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
data = {"feed": [{"image": image}], "fetch": ["res"]}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
import requests
import json
import cv2
import base64
import os, sys
import time
def cv2_to_base64(image):
#data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(image).decode(
'utf8') #data.tostring()).decode('utf8')
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:9292/ocr/prediction"
test_img_dir = "../../doc/imgs/"
for img_file in os.listdir(test_img_dir):
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
data = {"feed": [{"image": image}], "fetch": ["res"]}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
rjson = r.json()
print(rjson)
......@@ -17,11 +17,13 @@ pdserving服务部署目录下包括`检测`、`识别`、`2阶段串联`三种
deploy/pdserving/
└─ det_local_server.py 快速版 检测 服务端
└─ det_rpc_server.py 标准版 检测 服务端
└─ clas_local_server.py 快速版 方向分类器 服务端
└─ clas_rpc_server.py 标准版 方向分类器 服务端
└─ rec_local_server.py 快速版 识别 服务端
└─ rec_rpc_server.py 标准版 识别 服务端
└─ ocr_local_server.py 快速版 串联 服务端
└─ ocr_rpc_server.py 标准版 串联 服务端
└─ ocr_web_client.py 客户端
└─ pdserving_client.py 客户端
└─ params.py 配置文件
```
......@@ -39,7 +41,7 @@ deploy/pdserving/
**Python操作指南:**
目前Serving用于OCR的部分功能还在测试当中,因此在这里我们给出[Servnig latest package](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)
大家根据自己的环境选择需要安装的whl包即可,例如以Python 3.6为例,执行下列命令:
大家根据自己的环境选择需要安装的whl包即可,例如以Python 3.5为例,执行下列命令:
```
# 安装服务端,CPU/GPU版本选择一个
# GPU版本服务端
......@@ -54,7 +56,7 @@ python -m pip install -U https://paddle-serving.bj.bcebos.com/whl/paddle_serving
python -m pip install -U https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp35-none-any.whl https://paddle-serving.bj.bcebos.com/whl/paddle_serving_app-0.0.0-py3-none-any.whl
# 安装其他依赖
pip3.6 install func-timeout
pip3.5 install func-timeout
```
<a name="转换模型"></a>
......
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# -*- coding: utf-8 -*-
import requests
import json
import cv2
import base64
import os, sys
import time
def cv2_to_base64(image):
#data = cv2.imencode('.jpg', image)[1]
return base64.b64encode(image).decode(
'utf8') #data.tostring()).decode('utf8')
headers = {"Content-type": "application/json"}
url = "http://127.0.0.1:9292/ocr/prediction"
test_img_dir = "../../doc/imgs_words/ch/"
for img_file in os.listdir(test_img_dir):
with open(os.path.join(test_img_dir, img_file), 'rb') as file:
image_data1 = file.read()
image = cv2_to_base64(image_data1)
data = {"feed": [{"image": image}], "fetch": ["res"]}
r = requests.post(url=url, headers=headers, data=json.dumps(data))
print(r.json())
PaddleOCR提供2种服务部署方式:
- 基于PaddleServing的部署:代码路径为"`./deploy/pdserving`",按照本教程使用。。
- 基于PaddleHub Serving的部署:代码路径为"`./deploy/hubserving`",使用方法参考[文档](../../deploy/hubserving/readme.md)
# 使用Paddle Serving预测推理
阅读本文档之前,请先阅读文档 [基于Python预测引擎推理](./inference.md)
同本地执行预测一样,我们需要保存一份可以用于Paddle Serving的模型。
接下来首先介绍如何将训练的模型转换成Paddle Serving模型,然后将依次介绍文本检测、文本识别以及两者串联基于预测引擎推理。
### 一、 准备环境
我们先安装Paddle Serving相关组件
我们推荐用户使用GPU来做Paddle Serving的OCR服务部署
**CUDA版本:9.X/10.X**
**CUDNN版本:7.X**
**操作系统版本:Linux/Windows**
**Python版本: 2.7/3.5/3.6/3.7**
**Python操作指南:**
目前Serving用于OCR的部分功能还在测试当中,因此在这里我们给出[Servnig latest package](https://github.com/PaddlePaddle/Serving/blob/develop/doc/LATEST_PACKAGES.md)
大家根据自己的环境选择需要安装的whl包即可,例如以Python 3.5为例,执行下列命令
```
#CPU/GPU版本选择一个
#GPU版本服务端
#CUDA 9
python -m pip install -U https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.post9-py3-none-any.whl
#CUDA 10
python -m pip install -U https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server_gpu-0.0.0.post10-py3-none-any.whl
#CPU版本服务端
python -m pip install -U https://paddle-serving.bj.bcebos.com/whl/paddle_serving_server-0.0.0-py3-none-any.whl
#客户端和App包使用以下链接(CPU,GPU通用)
python -m pip install -U https://paddle-serving.bj.bcebos.com/whl/paddle_serving_client-0.0.0-cp36-none-any.whl https://paddle-serving.bj.bcebos.com/whl/paddle_serving_app-0.0.0-py3-none-any.whl
```
## 二、训练模型转Serving模型
在前序文档 [基于Python预测引擎推理](./inference.md) 中,我们提供了如何把训练的checkpoint转换成Paddle模型。Paddle模型通常由一个文件夹构成,内含模型结构描述文件`model`和模型参数文件`params`。Serving模型由两个文件夹构成,用于存放客户端和服务端的配置。
我们以`ch_rec_r34_vd_crnn`模型作为例子,下载链接在:
```
wget --no-check-certificate https://paddleocr.bj.bcebos.com/ch_models/ch_rec_r34_vd_crnn_infer.tar
tar xf ch_rec_r34_vd_crnn_infer.tar
```
因此我们按照Serving模型转换教程,运行下列python文件。
```
python tools/inference_to_serving.py --model_dir ch_rec_r34_vd_crnn
```
最终会在`serving_client_dir``serving_server_dir`生成客户端和服务端的模型配置。其中`serving_server_dir``serving_client_dir`的名字可以自定义。最终文件结构如下
```
/ch_rec_r34_vd_crnn/
├── serving_client_dir # 客户端配置文件夹
└── serving_server_dir # 服务端配置文件夹
```
## 三、文本检测模型Serving推理
启动服务可以根据实际需求选择启动`标准版`或者`快速版`,两种方式的对比如下表:
|版本|特点|适用场景|
|-|-|-|
|标准版|稳定性高,分布式部署|适用于吞吐量大,需要跨机房部署的情况|
|快速版|部署方便,预测速度快|适用于对预测速度要求高,迭代速度快的场景,Windows用户只能选择快速版|
接下来的命令中,我们会指定快速版和标准版的命令。需要说明的是,标准版只能用Linux平台,快速版可以支持Linux/Windows。
文本检测模型推理,默认使用DB模型的配置参数,识别默认为CRNN。
配置文件在`params.py`中,我们贴出配置部分,如果需要做改动,也在这个文件内部进行修改。
```
def read_params():
cfg = Config()
#use gpu
cfg.use_gpu = False # 是否使用GPU
cfg.use_pdserving = True # 是否使用paddleserving,必须为True
#params for text detector
cfg.det_algorithm = "DB" # 检测算法, DB/EAST等
cfg.det_model_dir = "./det_mv_server/" # 检测算法模型路径
cfg.det_max_side_len = 960
#DB params
cfg.det_db_thresh =0.3
cfg.det_db_box_thresh =0.5
cfg.det_db_unclip_ratio =2.0
#EAST params
cfg.det_east_score_thresh = 0.8
cfg.det_east_cover_thresh = 0.1
cfg.det_east_nms_thresh = 0.2
#params for text recognizer
cfg.rec_algorithm = "CRNN" # 识别算法, CRNN/RARE等
cfg.rec_model_dir = "./ocr_rec_server/" # 识别算法模型路径
cfg.rec_image_shape = "3, 32, 320"
cfg.rec_char_type = 'ch'
cfg.rec_batch_num = 30
cfg.max_text_length = 25
cfg.rec_char_dict_path = "./ppocr_keys_v1.txt" # 识别算法字典文件
cfg.use_space_char = True
#params for text classifier
cfg.use_angle_cls = True # 是否启用分类算法
cfg.cls_model_dir = "./ocr_clas_server/" # 分类算法模型路径
cfg.cls_image_shape = "3, 48, 192"
cfg.label_list = ['0', '180']
cfg.cls_batch_num = 30
cfg.cls_thresh = 0.9
return cfg
```
与本地预测不同的是,Serving预测需要一个客户端和一个服务端,因此接下来的教程都是两行代码。
在正式执行服务端启动命令之前,先export PYTHONPATH到工程主目录下。
```
export PYTHONPATH=$PWD:$PYTHONPATH
cd deploy/pdserving
```
为了方便用户复现Demo程序,我们提供了Chinese and English ultra-lightweight OCR model (8.1M)版本的Serving模型
```
wget --no-check-certificate https://paddleocr.bj.bcebos.com/deploy/pdserving/ocr_pdserving_suite.tar.gz
tar xf ocr_pdserving_suite.tar.gz
```
### 1. 超轻量中文检测模型推理
超轻量中文检测模型推理,可以执行如下命令启动服务端:
```
#根据环境只需要启动其中一个就可以
python det_rpc_server.py #标准版,Linux用户
python det_local_server.py #快速版,Windows/Linux用户
```
客户端
```
python det_web_client.py
```
Serving的推测和本地预测不同点在于,客户端发送请求到服务端,服务端需要检测到文字框之后返回框的坐标,此处没有后处理的图片,只能看到坐标值。
## 四、文本识别模型Serving推理
下面将介绍超轻量中文识别模型推理、基于CTC损失的识别模型推理和基于Attention损失的识别模型推理。对于中文文本识别,建议优先选择基于CTC损失的识别模型,实践中也发现基于Attention损失的效果不如基于CTC损失的识别模型。此外,如果训练时修改了文本的字典,请参考下面的自定义文本识别字典的推理。
### 1. 超轻量中文识别模型推理
超轻量中文识别模型推理,可以执行如下命令启动服务端:
需要注意params.py中的`--use_gpu`的值
```
#根据环境只需要启动其中一个就可以
python rec_rpc_server.py #标准版,Linux用户
python rec_local_server.py #快速版,Windows/Linux用户
```
如果需要使用CPU版本,还需增加 `--use_gpu False`
客户端
```
python rec_web_client.py
```
![](../imgs_words/ch/word_4.jpg)
执行命令后,上面图像的预测结果(识别的文本和得分)会打印到屏幕上,示例如下:
```
{u'result': {u'score': [u'0.89547354'], u'pred_text': ['实力活力']}}
```
## 五、方向分类模型推理
下面将介绍方向分类模型推理。
### 1. 方向分类模型推理
方向分类模型推理, 可以执行如下命令启动服务端:
需要注意params.py中的`--use_gpu`的值
```
#根据环境只需要启动其中一个就可以
python clas_rpc_server.py #标准版,Linux用户
python clas_local_server.py #快速版,Windows/Linux用户
```
客户端
```
python rec_web_client.py
```
![](../imgs_words/ch/word_4.jpg)
执行命令后,上面图像的预测结果(分类的方向和得分)会打印到屏幕上,示例如下:
```
{u'result': {u'direction': [u'0'], u'score': [u'0.9999963']}}
```
## 六、文本检测、方向分类和文字识别串联Serving推理
### 1. 超轻量中文OCR模型推理
在执行预测时,需要通过参数`image_dir`指定单张图像或者图像集合的路径、参数`det_model_dir`,`cls_model_dir``rec_model_dir`分别指定检测,方向分类和识别的inference模型路径。参数`use_angle_cls`用于控制是否启用方向分类模型。与本地预测不同的是,为了减少网络传输耗时,可视化识别结果目前不做处理,用户收到的是推理得到的文字字段。
执行如下命令启动服务端:
需要注意params.py中的`--use_gpu`的值
```
#标准版,Linux用户
#GPU用户
python -m paddle_serving_server_gpu.serve --model det_infer_server --port 9293 --gpu_id 0
python -m paddle_serving_server_gpu.serve --model cls_infer_server --port 9294 --gpu_id 0
python ocr_rpc_server.py
#CPU用户
python -m paddle_serving_server.serve --model det_infer_server --port 9293
python -m paddle_serving_server.serve --model cls_infer_server --port 9294
python ocr_rpc_server.py
#快速版,Windows/Linux用户
python ocr_local_server.py
```
客户端
```
python rec_web_client.py
```
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册