提交 3057cc83 编写于 作者: littletomatodonkey's avatar littletomatodonkey

add faq 2021-05-24

上级 323986a7
...@@ -4,11 +4,11 @@ ...@@ -4,11 +4,11 @@
PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。 PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力使用者训练出更好的模型,并应用落地。
## 注意 ## 注意
PaddleOCR同时支持动态图与静态图两种编程范式 PaddleOCR同时支持动态图与静态图两种编程范式
- 动态图版本:release/2.1(默认分支,开发分支为dygraph分支),需将paddle版本升级至2.0.0([快速安装](./doc/doc_ch/installation.md) - 动态图版本:release/2.1(默认分支,开发分支为dygraph分支),需将paddle版本升级至2.0.0或以上版本[快速安装](./doc/doc_ch/installation.md)
- 静态图版本:develop分支 - 静态图版本:develop分支
**近期更新** **近期更新**
- 2021.5.17 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数223个,每周一都会更新,欢迎大家持续关注。 - 2021.5.24 [FAQ](./doc/doc_ch/FAQ.md)新增5个高频问题,总数228个,每周一都会更新,欢迎大家持续关注。
- PaddleOCR研发团队对最新发版内容技术深入解读,4月13日晚上19:00,[直播地址](https://live.bilibili.com/21689802) - PaddleOCR研发团队对最新发版内容技术深入解读,4月13日晚上19:00,[直播地址](https://live.bilibili.com/21689802)
- 2021.4.8 release 2.1版本,新增AAAI 2021论文[端到端识别算法PGNet](./doc/doc_ch/pgnet.md)开源,[多语言模型](./doc/doc_ch/multi_languages.md)支持种类增加到80+。 - 2021.4.8 release 2.1版本,新增AAAI 2021论文[端到端识别算法PGNet](./doc/doc_ch/pgnet.md)开源,[多语言模型](./doc/doc_ch/multi_languages.md)支持种类增加到80+。
- 2021.2.8 正式发布PaddleOCRv2.0(branch release/2.0)并设置为推荐用户使用的默认分支. 发布的详细内容,请参考: https://github.com/PaddlePaddle/PaddleOCR/releases/tag/v2.0.0 - 2021.2.8 正式发布PaddleOCRv2.0(branch release/2.0)并设置为推荐用户使用的默认分支. 发布的详细内容,请参考: https://github.com/PaddlePaddle/PaddleOCR/releases/tag/v2.0.0
......
...@@ -9,14 +9,14 @@ ...@@ -9,14 +9,14 @@
## PaddleOCR常见问题汇总(持续更新) ## PaddleOCR常见问题汇总(持续更新)
* [近期更新(2021.5.17](#近期更新) * [近期更新(2021.5.24](#近期更新)
* [【精选】OCR精选10个问题](#OCR精选10个问题) * [【精选】OCR精选10个问题](#OCR精选10个问题)
* [【理论篇】OCR通用43个问题](#OCR通用问题) * [【理论篇】OCR通用44个问题](#OCR通用问题)
* [基础知识13题](#基础知识) * [基础知识13题](#基础知识)
* [数据集9题](#数据集2) * [数据集9题](#数据集2)
* [模型训练调优21](#模型训练调优2) * [模型训练调优22](#模型训练调优2)
* [【实战篇】PaddleOCR实战170个问题](#PaddleOCR实战问题) * [【实战篇】PaddleOCR实战174个问题](#PaddleOCR实战问题)
* [使用咨询68](#使用咨询) * [使用咨询72](#使用咨询)
* [数据集18题](#数据集3) * [数据集18题](#数据集3)
* [模型训练调优36题](#模型训练调优3) * [模型训练调优36题](#模型训练调优3)
* [预测部署48题](#预测部署3) * [预测部署48题](#预测部署3)
...@@ -24,38 +24,34 @@ ...@@ -24,38 +24,34 @@
<a name="近期更新"></a> <a name="近期更新"></a>
## 近期更新(2021.5.17) ## 近期更新(2021.5.17)
### Q3.1.66: iaa里面添加的数据增强方式,是每张图像训练都会做增强还是随机的?如何添加一个数据增强方法 ### Q2.3.22: 目前知识蒸馏有哪些主要的实践思路
**A**:iaa增强的训练配置参考:[链接](https://github.com/PaddlePaddle/PaddleOCR/blob/0ccc1720c252beb277b9e522a1b228eb6abffb8a/configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml#L82) **A**:知识蒸馏即利用教师模型指导学生模型的训练,目前有3种主要的蒸馏思路:
其中{ 'type': Fliplr, 'args': { 'p': 0.5 } } p是概率。新增数据增强,可以参考这个[方法](https://github.com/PaddlePaddle/PaddleOCR/blob/release%2F2.1/doc/doc_ch/add_new_algorithm.md#%E6%95%B0%E6%8D%AE%E5%8A%A0%E8%BD%BD%E5%92%8C%E5%A4%84%E7%90%86) 1. 基于输出结果的蒸馏,即让学生模型学习教师模型的软标签(分类或者OCR识别等任务中)或者概率热度图(分割等任务中)。
2. 基于特征图的蒸馏,即让学生模型学习教师模型中间层的特征图,拟合中间层的一些特征。
3. 基于关系的蒸馏,针对不同的样本(假设个数为N),教师模型会有不同的输出,那么可以基于不同样本的输出,计算一个NxN的相关性矩阵,可以让学生模型去学习教师模型关于不同样本的相关性矩阵。
### Q3.1.67: PGNet训练中文弯曲数据集,可视化时弯曲文本无法显示 当然,知识蒸馏方法日新月异,也欢迎大家提出更多的总结与建议
**A**: 可能是因为安装的OpenCV里,cv2.putText不能显示中文的原因,可以尝试用Pillow来添加显示中文,需要改draw_e2e_res函数里面的代码,可以参考如下代码: ### Q3.1.69: 怎么加速训练过程呢?
```
box = box.astype(np.int32).reshape((-1, 1, 2))
cv2.polylines(src_im, [box], True, color=(255, 255, 0), thickness=2)
from PIL import ImageFont, ImageDraw, Image **A**:OCR模型训练过程中一般包含大量的数据增广,这些数据增广是比较耗时的,因此可以离线生成大量增广后的图像,直接送入网络进行训练,机器资源充足的情况下,也可以使用分布式训练的方法,可以参考[分布式训练教程文档](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/distributed_training.md)
img = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))
draw = ImageDraw.Draw(img)
fontStyle = ImageFont.truetype(
"font/msyh.ttc", 16, encoding="utf-8")
draw.text((int(box[0, 0, 0]), int(box[0, 0, 1])), text, (0, 255, 0), font=fontStyle)
src_im= cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
```
### Q3.1.68: 用PGNet做进行端到端训练时,数据集标注的点的个数必须都是统一一样的吗? 能不能随意标点数,只要能够按顺时针从左上角开始标这样?
**A**: 目前代码要求标注为统一的点数。 ### Q3.1.70: 文字识别模型模型的输出矩阵需要进行解码才能得到识别的文本。代码中实现为preds_idx = preds.argmax(axis=2),也就是最佳路径解码法。这是一种贪心算法,是每一个时间步只将最大概率的字符作为当前时间步的预测输出,但得到的结果不一定是最好的。为什么不使用beam search这种方式进行解码呢?
#### Q3.4.47: 请教如何优化检测阶段时长? **A**:实验发现,使用贪心的方法去做解码,识别精度影响不大,但是速度方面的优势比较明显,因此PaddleOCR中使用贪心算法去做识别的解码。
**A**: 预测单张图会慢一点,如果批量预测,第一张图比较慢,后面就快了,因为最开始一些初始化操作比较耗时。服务部署的话,访问一次后,后面再访问就不会初始化了,推理的话每次都需要初始化的。 ### Q3.1.71: 请教一下如何在现有中英文识别模型上增加对罗马数字的识别?
### Q3.4.48: paddle serving 本地启动调用失败,怎么判断是否正常工作? **A**:因为目前中英文识别模型的字符中没有包含罗马数字,所以需要通过以下步骤,完成识别模型的微调过程:
1. 准备中英文识别数据以及罗马数字的识别数据,用于训练,同时保证罗马数字和中英文识别数字的效果;
2. 修改默认的字典文件,在后面添加罗马数字的字符;
3. 下载PaddleOCR提供的预训练模型,配置预训练模型和数据的路径,开始训练。
**A**:没有打印出预测结果,说明启动失败。可以参考这篇文档重新配置下动态图的paddle serving:https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/deploy/pdserving/README_CN.md ### Q3.1.72: 文字识别主要有CRNN和Attention两种方式,但是在我们的说明文档中,CRNN有对应的论文,但是Attention没看到,这个具体在哪里呢?
**A**:文字识别主要有CTC和Attention两种方式,基于CTC的算法有CRNN、Rosetta、StarNet,基于Attention的方法有RARE、其他的算法PaddleOCR里没有提供复现代码。论文的链接可以参考:[https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
...@@ -337,9 +333,19 @@ src_im= cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) ...@@ -337,9 +333,19 @@ src_im= cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
#### Q2.3.20: 如何根据不同的硬件平台选用不同的backbone? #### Q2.3.20: 如何根据不同的硬件平台选用不同的backbone?
**A**:在不同的硬件上,不同的backbone的速度优势不同,可以根据不同平台的速度-精度图来确定backbone,这里可以参考[PaddleClas模型速度-精度图](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/docs/zh_CN/models) **A**:在不同的硬件上,不同的backbone的速度优势不同,可以根据不同平台的速度-精度图来确定backbone,这里可以参考[PaddleClas模型速度-精度图](https://github.com/PaddlePaddle/PaddleClas/tree/release/2.0/docs/zh_CN/models)
#### Q2.3.21: 端到端算法PGNet是否支持中文识别,速度会很慢嘛? #### Q2.3.21: 端到端算法PGNet是否支持中文识别,速度会很慢嘛?
**A**:目前开源的PGNet算法模型主要是用于检测英文数字,对于中文的识别需要自己训练,大家可以使用开源的端到端中文数据集,而对于复杂文本(弯曲文本)的识别,也可以自己构造一批数据集针对进行训练,对于推理速度,可以先将模型转换为inference再进行预测,速度应该会相当可观。 **A**:目前开源的PGNet算法模型主要是用于检测英文数字,对于中文的识别需要自己训练,大家可以使用开源的端到端中文数据集,而对于复杂文本(弯曲文本)的识别,也可以自己构造一批数据集针对进行训练,对于推理速度,可以先将模型转换为inference再进行预测,速度应该会相当可观。
### Q2.3.22: 目前知识蒸馏有哪些主要的实践思路?
**A**:知识蒸馏即利用教师模型指导学生模型的训练,目前有3种主要的蒸馏思路:
1. 基于输出结果的蒸馏,即让学生模型学习教师模型的软标签(分类或者OCR识别等任务中)或者概率热度图(分割等任务中)。
2. 基于特征图的蒸馏,即让学生模型学习教师模型中间层的特征图,拟合中间层的一些特征。
3. 基于关系的蒸馏,针对不同的样本(假设个数为N),教师模型会有不同的输出,那么可以基于不同样本的输出,计算一个NxN的相关性矩阵,可以让学生模型去学习教师模型关于不同样本的相关性矩阵。
当然,知识蒸馏方法日新月异,也欢迎大家提出更多的总结与建议。
<a name="PaddleOCR实战问题"></a> <a name="PaddleOCR实战问题"></a>
## 【实战篇】PaddleOCR实战问题 ## 【实战篇】PaddleOCR实战问题
...@@ -693,6 +699,27 @@ src_im= cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR) ...@@ -693,6 +699,27 @@ src_im= cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)
**A**: 目前代码要求标注为统一的点数。 **A**: 目前代码要求标注为统一的点数。
### Q3.1.69: 怎么加速训练过程呢?
**A**:OCR模型训练过程中一般包含大量的数据增广,这些数据增广是比较耗时的,因此可以离线生成大量增广后的图像,直接送入网络进行训练,机器资源充足的情况下,也可以使用分布式训练的方法,可以参考[分布式训练教程文档](https://github.com/PaddlePaddle/PaddleOCR/blob/dygraph/doc/doc_ch/distributed_training.md)
### Q3.1.70: 文字识别模型模型的输出矩阵需要进行解码才能得到识别的文本。代码中实现为preds_idx = preds.argmax(axis=2),也就是最佳路径解码法。这是一种贪心算法,是每一个时间步只将最大概率的字符作为当前时间步的预测输出,但得到的结果不一定是最好的。为什么不使用beam search这种方式进行解码呢?
**A**:实验发现,使用贪心的方法去做解码,识别精度影响不大,但是速度方面的优势比较明显,因此PaddleOCR中使用贪心算法去做识别的解码。
### Q3.1.71: 请教一下如何在现有中英文识别模型上增加对罗马数字的识别?
**A**:因为目前中英文识别模型的字符中没有包含罗马数字,所以需要通过以下步骤,完成识别模型的微调过程:
1. 准备中英文识别数据以及罗马数字的识别数据,用于训练,同时保证罗马数字和中英文识别数字的效果;
2. 修改默认的字典文件,在后面添加罗马数字的字符;
3. 下载PaddleOCR提供的预训练模型,配置预训练模型和数据的路径,开始训练。
### Q3.1.72: 文字识别主要有CRNN和Attention两种方式,但是在我们的说明文档中,CRNN有对应的论文,但是Attention没看到,这个具体在哪里呢?
**A**:文字识别主要有CTC和Attention两种方式,基于CTC的算法有CRNN、Rosetta、StarNet,基于Attention的方法有RARE、其他的算法PaddleOCR里没有提供复现代码。论文的链接可以参考:[https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95](https://github.com/PaddlePaddle/PaddleOCR/blob/release/2.1/doc/doc_ch/algorithm_overview.md#%E6%96%87%E6%9C%AC%E8%AF%86%E5%88%AB%E7%AE%97%E6%B3%95)
<a name="数据集3"></a> <a name="数据集3"></a>
### 数据集 ### 数据集
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册