未验证 提交 2dcc6a99 编写于 作者: E Evezerest 提交者: GitHub

Merge pull request #3970 from Evezerest/2.3

Add dictionary, add_new_algorithm and doc link
......@@ -120,6 +120,7 @@ For a new language request, please refer to [Guideline for new language_requests
- [Two-stage Algorithm](./doc/doc_en/algorithm_overview_en.md)
- [PGNet Algorithm](./doc/doc_en/algorithm_overview_en.md)
- [Python Inference](./doc/doc_en/inference_en.md)
- [Use PaddleOCR Architecture to Add New Algorithms](./doc/doc_en/add_new_algorithm_en.md)
- Data Annotation and Synthesis
- [Semi-automatic Annotation Tool: PPOCRLabel](./PPOCRLabel/README.md)
- [Data Synthesis Tool: Style-Text](./StyleText/README.md)
......@@ -127,7 +128,7 @@ For a new language request, please refer to [Guideline for new language_requests
- [Other Data Synthesis Tools](./doc/doc_en/data_synthesis_en.md)
- Datasets
- [General OCR Datasets(Chinese/English)](./doc/doc_en/datasets_en.md)
- [HandWritten_OCR_Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
- [Handwritten OCR Datasets(Chinese)](./doc/doc_en/handwritten_datasets_en.md)
- [Various OCR Datasets(multilingual)](./doc/doc_en/vertical_and_multilingual_datasets_en.md)
- [Visualization](#Visualization)
- [New language requests](#language_requests)
......
......@@ -94,7 +94,7 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- PP-OCR产业落地:从训练到部署
- [PP-OCR模型库](./doc/doc_ch/models.md)
- [PP-OCR模型下载](./doc/doc_ch/models_list.md)
- [PP-OCR模型库Python推理](./doc/doc_ch/inference_ppocr.md)
- [基于Python引擎的PP-OCR模型库推理](./doc/doc_ch/inference_ppocr.md)
- [PP-OCR模型训练](./doc/doc_ch/training.md)
- [文本检测](./doc/doc_ch/detection.md)
- [文本识别](./doc/doc_ch/recognition.md)
......@@ -114,9 +114,10 @@ PaddleOCR旨在打造一套丰富、领先、且实用的OCR工具库,助力
- [其它数据标注工具](./doc/doc_ch/data_annotation.md)
- [其它数据合成工具](./doc/doc_ch/data_synthesis.md)
- OCR学术圈
- [两阶段模型介绍与下载](./doc/doc_ch/algorithm_overview.md)
- [两阶段算法](./doc/doc_ch/algorithm_overview.md)
- [端到端PGNet算法](./doc/doc_ch/pgnet.md)
- [基于Python脚本预测引擎推理](./doc/doc_ch/inference.md)
- [使用PaddleOCR架构添加新算法](./doc/doc_ch/add_new_algorithm.md)
- 数据集
- [通用中英文OCR数据集](./doc/doc_ch/datasets.md)
- [手写中文OCR数据集](./doc/doc_ch/handwritten_datasets.md)
......
<a name="算法介绍"></a>
## 算法介绍
# 两阶段算法
- [两阶段算法](#-----)
* [1. 算法介绍](#1)
+ [1.1 文本检测算法](#11)
+ [1.2 文本识别算法](#12)
* [2. 模型训练](#2)
* [3. 模型推理](#3)
<a name="1"></a>
## 1. 算法介绍
本文给出了PaddleOCR已支持的文本检测算法和文本识别算法列表,以及每个算法在**英文公开数据集**上的模型和指标,主要用于算法简介和算法性能对比,更多包括中文在内的其他数据集上的模型请参考[PP-OCR v2.0 系列模型下载](./models_list.md)
- [1.文本检测算法](#文本检测算法)
- [2.文本识别算法](#文本识别算法)
<a name="11"></a>
<a name="文本检测算法"></a>
### 1.文本检测算法
### 1.1 文本检测算法
PaddleOCR开源的文本检测算法列表:
- [x] DB([paper]( https://arxiv.org/abs/1911.08947)) [2](ppocr推荐)
......@@ -16,27 +24,25 @@ PaddleOCR开源的文本检测算法列表:
在ICDAR2015文本检测公开数据集上,算法效果如下:
|模型|骨干网络|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- |
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
|EAST|ResNet50_vd|85.80%|86.71%|86.25%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_east_v2.0_train.tar)|
|EAST|MobileNetV3|79.42%|80.64%|80.03%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_east_v2.0_train.tar)|
|DB|ResNet50_vd|86.41%|78.72%|82.38%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar)|
|DB|MobileNetV3|77.29%|73.08%|75.12%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_mv3_db_v2.0_train.tar)|
|SAST|ResNet50_vd|91.39%|83.77%|87.42%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_icdar15_v2.0_train.tar)|
在Total-text文本检测公开数据集上,算法效果如下:
|模型|骨干网络|precision|recall|Hmean|下载链接|
| --- | --- | --- | --- | --- | --- |
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
|SAST|ResNet50_vd|89.63%|78.44%|83.66%|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_sast_totaltext_v2.0_train.tar)|
**说明:** SAST模型训练额外加入了icdar2013、icdar2017、COCO-Text、ArT等公开数据集进行调优。PaddleOCR用到的经过整理格式的英文公开数据集下载:
* [百度云地址](https://pan.baidu.com/s/12cPnZcVuV1zn5DOd4mqjVw) (提取码: 2bpi)
* [Google Drive下载地址](https://drive.google.com/drive/folders/1ll2-XEVyCQLpJjawLDiRlvo_i4BqHCJe?usp=sharing)
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)
<a name="12"></a>
<a name="文本识别算法"></a>
### 2.文本识别算法
### 1.2 文本识别算法
PaddleOCR基于动态图开源的文本识别算法列表:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7](ppocr推荐)
......@@ -50,16 +56,26 @@ PaddleOCR基于动态图开源的文本识别算法列表:
|模型|骨干网络|Avg Accuracy|模型存储命名|下载链接|
|---|---|---|---|---|
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [下载链接](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
PaddleOCR文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)
|Rosetta|Resnet34_vd|80.9%|rec_r34_vd_none_none_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_none_ctc_v2.0_train.tar)|
|Rosetta|MobileNetV3|78.05%|rec_mv3_none_none_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_none_ctc_v2.0_train.tar)|
|CRNN|Resnet34_vd|82.76%|rec_r34_vd_none_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_none_bilstm_ctc_v2.0_train.tar)|
|CRNN|MobileNetV3|79.97%|rec_mv3_none_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_none_bilstm_ctc_v2.0_train.tar)|
|StarNet|Resnet34_vd|84.44%|rec_r34_vd_tps_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_ctc_v2.0_train.tar)|
|StarNet|MobileNetV3|81.42%|rec_mv3_tps_bilstm_ctc|[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_ctc_v2.0_train.tar)|
|RARE|MobileNetV3|82.5%|rec_mv3_tps_bilstm_att |[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mv3_tps_bilstm_att_v2.0_train.tar)|
|RARE|Resnet34_vd|83.6%|rec_r34_vd_tps_bilstm_att |[预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r34_vd_tps_bilstm_att_v2.0_train.tar)|
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn | [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar) |
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
<a name="2"></a>
## 2. 模型训练
PaddleOCR文本检测算法的训练和使用请参考文档教程中[模型训练/评估中的文本检测部分](./detection.md)。文本识别算法的训练和使用请参考文档教程中[模型训练/评估中的文本识别部分](./recognition.md)
<a name="3"></a>
## 3. 模型推理
上述模型中除PP-OCR系列模型以外,其余模型仅支持基于Python引擎的推理,具体内容可参考[基于Python预测引擎推理](./inference.md)
# PP-OCR模型库Python推理
# 基于Python引擎的PP-OCR模型库推理
本文介绍针对PP-OCR模型库的Python推理引擎使用方法,内容依次为文本检测、文本识别、方向分类器以及三者串联在CPU、GPU上的预测方法。
......
......@@ -33,8 +33,8 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_det_slim|slim量化+蒸馏版超轻量模型,支持中英文、多语种文本检测|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)| 3M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar)|
|ch_PP-OCRv2_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)|
|ch_PP-OCRv2_det_slim|【最新】slim量化+蒸馏版超轻量模型,支持中英文、多语种文本检测|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)| 3M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar)|
|ch_PP-OCRv2_det|【最新】原始超轻量模型,支持中英文、多语种文本检测|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)|
|ch_ppocr_mobile_slim_v2.0_det|slim裁剪版超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)| 2.6M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar)|
|ch_ppocr_mobile_v2.0_det|原始超轻量模型,支持中英文、多语种文本检测|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|ch_ppocr_server_v2.0_det|通用模型,支持中英文、多语种文本检测,比超轻量模型更大,但效果更好|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
......@@ -48,8 +48,8 @@ PaddleOCR提供的可下载模型包括`推理模型`、`训练模型`、`预训
|模型名称|模型简介|配置文件|推理模型大小|下载地址|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_rec_slim|slim量化版超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
|ch_PP-OCRv2_rec|原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_PP-OCRv2_rec_slim|【最新】slim量化版超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
|ch_PP-OCRv2_rec|【最新】原始超轻量模型,支持中英文、数字识别|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[推理模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|slim裁剪量化版超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| 6M |[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|原始超轻量模型,支持中英文、数字识别|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|5.2M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_server_v2.0_rec|通用模型,支持中英文、数字识别|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[推理模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [预训练模型](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
......
......@@ -43,7 +43,7 @@ PGNet算法细节详见[论文](https://www.aaai.org/AAAI21Papers/AAAI-2885.Wang
<a name="环境配置"></a>
## 二、环境配置
请先参考[快速安装](./installation.md)配置PaddleOCR运行环境。
请先参考[《运行环境准备》](./environment.md)配置PaddleOCR运行环境,参考[《PaddleOCR全景图与项目克隆》](./paddleOCR_overview.md)克隆项目
<a name="快速使用"></a>
## 三、快速使用
......
# Add new algorithm
# Add New Algorithm
PaddleOCR decomposes an algorithm into the following parts, and modularizes each part to make it more convenient to develop new algorithms.
......@@ -263,7 +263,7 @@ Metric:
main_indicator: acc
```
## 优化器
## Optimizer
The optimizer is used to train the network. The optimizer also contains network regularization and learning rate decay modules. This part is under [ppocr/optimizer](../../ppocr/optimizer). PaddleOCR has built-in
Commonly used optimizer modules such as `Momentum`, `Adam` and `RMSProp`, common regularization modules such as `Linear`, `Cosine`, `Step` and `Piecewise`, and common learning rate decay modules such as `L1Decay` and `L2Decay`.
......
# Two-stage Algorithm
- [1. Algorithm Introduction](#1-algorithm-introduction)
* [1.1 Text Detection Algorithm](#11-text-detection-algorithm)
* [1.2 Text Recognition Algorithm](#12-text-recognition-algorithm)
- [2. Training](#2-training)
- [3. Inference](#3-inference)
<a name="Algorithm_introduction"></a>
## Algorithm introduction
## 1. Algorithm Introduction
This tutorial lists the text detection algorithms and text recognition algorithms supported by PaddleOCR, as well as the models and metrics of each algorithm on **English public datasets**. It is mainly used for algorithm introduction and algorithm performance comparison. For more models on other datasets including Chinese, please refer to [PP-OCR v2.0 models list](./models_list_en.md).
......@@ -8,7 +17,8 @@ This tutorial lists the text detection algorithms and text recognition algorithm
- [2. Text Recognition Algorithm](#TEXTRECOGNITIONALGORITHM)
<a name="TEXTDETECTIONALGORITHM"></a>
### 1. Text Detection Algorithm
### 1.1 Text Detection Algorithm
PaddleOCR open source text detection algorithms list:
- [x] EAST([paper](https://arxiv.org/abs/1704.03155))[2]
......@@ -38,7 +48,7 @@ On Total-Text dataset, the text detection result is as follows:
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md)
<a name="TEXTRECOGNITIONALGORITHM"></a>
### 2. Text Recognition Algorithm
### 1.2 Text Recognition Algorithm
PaddleOCR open-source text recognition algorithms list:
- [x] CRNN([paper](https://arxiv.org/abs/1507.05717))[7]
......@@ -63,4 +73,12 @@ Refer to [DTRB](https://arxiv.org/abs/1904.01906), the training and evaluation r
|SRN|Resnet50_vd_fpn| 88.52% | rec_r50fpn_vd_none_srn |[Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_r50_vd_srn_train.tar)|
|NRTR|NRTR_MTB| 84.3% | rec_mtb_nrtr | [Download link](https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/rec_mtb_nrtr_train.tar) |
Please refer to the document for training guide and use of PaddleOCR text recognition algorithms [Text recognition model training/evaluation/prediction](./recognition_en.md)
Please refer to the document for training guide and use of PaddleOCR
## 2. Training
For the training guide and use of PaddleOCR text detection algorithms, please refer to the document [Text detection model training/evaluation/prediction](./detection_en.md). For text recognition algorithms, please refer to [Text recognition model training/evaluation/prediction](./recognition_en.md)
## 3. Inference
Except for the PP-OCR series models of the above models, the other models only support inference based on the Python engine. For details, please refer to [Inference based on Python prediction engine](./inference_en.md)
# Environment Preparation
Windows and Mac users are recommended to use Anaconda to build a Python environment, and Linux users are recommended to use docker to build a Python environment. If you are familiar with the Python environment, you can skip to step 2 to install PaddlePaddle.
* [1. Python Environment Setup](#1)
+ [1.1 Windows](#1.1)
+ [1.2 Mac](#1.2)
......
......@@ -29,8 +29,8 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_det_slim|slim quantization with distillation lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)| 3M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar)|
|ch_PP-OCRv2_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)|
|ch_PP-OCRv2_det_slim|[New] slim quantization with distillation lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)| 3M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_slim_quant_infer.tar)|
|ch_PP-OCRv2_det|[New] Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_det_cml.yml](../../configs/det/ch_PP-OCRv2/ch_PP-OCR_det_cml.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_det_distill_train.tar)|
|ch_ppocr_mobile_slim_v2.0_det|Slim pruned lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|2.6M |[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/slim/ch_ppocr_mobile_v2.0_det_prune_infer.tar)|
|ch_ppocr_mobile_v2.0_det|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_det_mv3_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_mv3_db_v2.0.yml)|3M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_train.tar)|
|ch_ppocr_server_v2.0_det|General model, which is larger than the lightweight model, but achieved better performance|[ch_det_res18_db_v2.0.yml](../../configs/det/ch_ppocr_v2.0/ch_det_res18_db_v2.0.yml)|47M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_det_train.tar)|
......@@ -43,8 +43,8 @@ Relationship of the above models is as follows.
|model name|description|config|model size|download|
| --- | --- | --- | --- | --- |
|ch_PP-OCRv2_rec_slim|Slim qunatization with distillation lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
|ch_PP-OCRv2_rec|Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_PP-OCRv2_rec_slim|[New] Slim qunatization with distillation lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)| 9M |[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_slim_quant_train.tar) |
|ch_PP-OCRv2_rec|[New] Original lightweight model, supporting Chinese, English, multilingual text detection|[ch_PP-OCRv2_rec.yml](../../configs/rec/ch_PP-OCRv2/ch_PP-OCRv2_rec.yml)|8.5M|[inference model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/PP-OCRv2/chinese/ch_PP-OCRv2_rec_train.tar) |
|ch_ppocr_mobile_slim_v2.0_rec|Slim pruned and quantized lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)| 6M | [inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_slim_train.tar) |
|ch_ppocr_mobile_v2.0_rec|Original lightweight model, supporting Chinese, English and number recognition|[rec_chinese_lite_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_lite_train_v2.0.yml)|5.2M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_pre.tar) |
|ch_ppocr_server_v2.0_rec|General model, supporting Chinese, English and number recognition|[rec_chinese_common_train_v2.0.yml](../../configs/rec/ch_ppocr_v2.0/rec_chinese_common_train_v2.0.yml)|94.8M|[inference model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_infer.tar) / [trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_train.tar) / [pre-trained model](https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_server_v2.0_rec_pre.tar) |
......
......@@ -36,7 +36,7 @@ The results of detection and recognition are as follows:
<a name="Environment_Configuration"></a>
## 2. Environment Configuration
Please refer to [Quick Installation](./installation_en.md) Configure the PaddleOCR running environment.
Please refer to [Operation Environment Preparation](./environment_en.md) to configure PaddleOCR operating environment first, refer to [PaddleOCR Overview and Project Clone](./paddleOCR_overview_en.md) to clone the project
<a name="Quick_Use"></a>
## 3. Quick Use
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册