Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
27df36ec
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
大约 1 年 前同步成功
通知
1528
Star
32962
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
27df36ec
编写于
11月 25, 2021
作者:
A
andyjpaddle
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rec attention model to tipc
上级
caa7799b
变更
10
隐藏空白更改
内联
并排
Showing
10 changed file
with
774 addition
and
0 deletion
+774
-0
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
+103
-0
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
+52
-0
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
...gs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
+103
-0
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
...onfigs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
+52
-0
test_tipc/configs/rec_r31_sar/rec_r31_sar.yml
test_tipc/configs/rec_r31_sar/rec_r31_sar.yml
+98
-0
test_tipc/configs/rec_r31_sar/train_infer_python.txt
test_tipc/configs/rec_r31_sar/train_infer_python.txt
+52
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml
..._r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml
+102
-0
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt
...igs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt
+52
-0
test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml
..._tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml
+108
-0
test_tipc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt
...pc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt
+52
-0
未找到文件。
test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml
0 → 100644
浏览文件 @
27df36ec
Global
:
use_gpu
:
True
epoch_num
:
21
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/nrtr/
save_epoch_step
:
1
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words_en/word_10.png
# for data or label process
character_dict_path
:
ppocr/utils/EN_symbol_dict.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_nrtr.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.99
clip_norm
:
5.0
lr
:
name
:
Cosine
learning_rate
:
0.0005
warmup_epoch
:
2
regularizer
:
name
:
'
L2'
factor
:
0.
Architecture
:
model_type
:
rec
algorithm
:
NRTR
in_channels
:
1
Transform
:
Backbone
:
name
:
MTB
cnn_num
:
2
Head
:
name
:
Transformer
d_model
:
512
num_encoder_layers
:
6
beam_size
:
-1
# When Beam size is greater than 0, it means to use beam search when evaluation.
Loss
:
name
:
NRTRLoss
smoothing
:
True
PostProcess
:
name
:
NRTRLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
NRTRRecResizeImg
:
image_shape
:
[
100
,
32
]
resize_type
:
PIL
# PIL or OpenCV
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
512
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
NRTRLabelEncode
:
# Class handling label
-
NRTRRecResizeImg
:
image_shape
:
[
100
,
32
]
resize_type
:
PIL
# PIL or OpenCV
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
1
use_shared_memory
:
False
test_tipc/configs/rec_mtb_nrtr/train_infer_python.txt
0 → 100644
浏览文件 @
27df36ec
===========================train_params===========================
model_name:rec_mtb_nrtr
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mtb_nrtr/rec_mtb_nrtr.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/EN_symbol_dict.txt --rec_image_shape="1,32,100" --rec_algorithm="NRTR"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml
0 → 100644
浏览文件 @
27df36ec
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/rec_mv3_tps_bilstm_att/
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_mv3_tps_bilstm_att.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
RARE
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
small
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
large
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
96
Head
:
name
:
AttentionHead
hidden_size
:
96
Loss
:
name
:
AttentionLoss
PostProcess
:
name
:
AttnLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
1
test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
27df36ec
===========================train_params===========================
model_name:rec_mv3_tps_bilstm_att_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_mv3_tps_bilstm_att_v2.0/rec_mv3_tps_bilstm_att.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r31_sar/rec_r31_sar.yml
0 → 100644
浏览文件 @
27df36ec
Global
:
use_gpu
:
true
epoch_num
:
5
log_smooth_window
:
20
print_batch_step
:
20
save_model_dir
:
./sar_rec
save_epoch_step
:
1
# evaluation is run every 2000 iterations
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
# for data or label process
character_dict_path
:
ppocr/utils/dict90.txt
max_text_length
:
30
infer_mode
:
False
use_space_char
:
False
rm_symbol
:
True
save_res_path
:
./output/rec/predicts_sar.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Piecewise
decay_epochs
:
[
3
,
4
]
values
:
[
0.001
,
0.0001
,
0.00001
]
regularizer
:
name
:
'
L2'
factor
:
0
Architecture
:
model_type
:
rec
algorithm
:
SAR
Transform
:
Backbone
:
name
:
ResNet31
Head
:
name
:
SARHead
Loss
:
name
:
SARLoss
PostProcess
:
name
:
SARLabelDecode
Metric
:
name
:
RecMetric
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SARLabelEncode
:
# Class handling label
-
SARRecResizeImg
:
image_shape
:
[
3
,
48
,
48
,
160
]
# h:48 w:[48,160]
width_downsample_ratio
:
0.25
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
valid_ratio'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
64
drop_last
:
True
num_workers
:
8
use_shared_memory
:
False
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SARLabelEncode
:
# Class handling label
-
SARRecResizeImg
:
image_shape
:
[
3
,
48
,
48
,
160
]
width_downsample_ratio
:
0.25
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
valid_ratio'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
64
num_workers
:
4
use_shared_memory
:
False
test_tipc/configs/rec_r31_sar/train_infer_python.txt
0 → 100644
浏览文件 @
27df36ec
===========================train_params===========================
model_name:rec_r31_sar
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r31_sar/rec_r31_sar.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/dict90.txt --rec_image_shape="3,48,48,160" --rec_algorithm="SAR"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|fp16|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml
0 → 100644
浏览文件 @
27df36ec
Global
:
use_gpu
:
True
epoch_num
:
400
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec/b3_rare_r34_none_gru/
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
max_text_length
:
25
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_b3_rare_r34_none_gru.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
learning_rate
:
0.0005
regularizer
:
name
:
'
L2'
factor
:
0.00000
Architecture
:
model_type
:
rec
algorithm
:
RARE
Transform
:
name
:
TPS
num_fiducial
:
20
loc_lr
:
0.1
model_name
:
large
Backbone
:
name
:
ResNet
layers
:
34
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
256
#96
Head
:
name
:
AttentionHead
# AttentionHead
hidden_size
:
256
#
l2_decay
:
0.00001
Loss
:
name
:
AttentionLoss
PostProcess
:
name
:
AttnLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
AttnLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
100
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/train_infer_python.txt
0 → 100644
浏览文件 @
27df36ec
===========================train_params===========================
model_name:rec_r34_vd_tps_bilstm_att_v2.0
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r34_vd_tps_bilstm_att_v2.0/rec_r34_vd_tps_bilstm_att.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="3,32,100" --rec_algorithm="RARE"
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml
0 → 100644
浏览文件 @
27df36ec
Global
:
use_gpu
:
True
epoch_num
:
72
log_smooth_window
:
20
print_batch_step
:
5
save_model_dir
:
./output/rec/srn_new
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
5000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
max_text_length
:
25
num_heads
:
8
infer_mode
:
False
use_space_char
:
False
save_res_path
:
./output/rec/predicts_srn.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
clip_norm
:
10.0
lr
:
learning_rate
:
0.0001
Architecture
:
model_type
:
rec
algorithm
:
SRN
in_channels
:
1
Transform
:
Backbone
:
name
:
ResNetFPN
Head
:
name
:
SRNHead
max_text_length
:
25
num_heads
:
8
num_encoder_TUs
:
2
num_decoder_TUs
:
4
hidden_dims
:
512
Loss
:
name
:
SRNLoss
PostProcess
:
name
:
SRNLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data/
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SRNLabelEncode
:
# Class handling label
-
SRNRecResizeImg
:
image_shape
:
[
1
,
64
,
256
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
,
'
encoder_word_pos'
,
'
gsrm_word_pos'
,
'
gsrm_slf_attn_bias1'
,
'
gsrm_slf_attn_bias2'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
batch_size_per_card
:
64
drop_last
:
False
num_workers
:
4
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
./train_data/ic15_data
label_file_list
:
[
"
./train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
SRNLabelEncode
:
# Class handling label
-
SRNRecResizeImg
:
image_shape
:
[
1
,
64
,
256
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
,
'
encoder_word_pos'
,
'
gsrm_word_pos'
,
'
gsrm_slf_attn_bias1'
,
'
gsrm_slf_attn_bias2'
]
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
32
num_workers
:
4
test_tipc/configs/rec_r50_fpn_vd_none_srn/train_infer_python.txt
0 → 100644
浏览文件 @
27df36ec
===========================train_params===========================
model_name:rec_r50_fpn_vd_none_srn
python:python3.7
gpu_list:0|0,1
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=2|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./inference/rec_inference
null:null
##
trainer:norm_train
norm_train:tools/train.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
pact_train:null
fpgm_train:null
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:tools/eval.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
quant_export:null
fpgm_export:null
distill_export:null
export1:null
export2:null
##
infer_model:null
infer_export:tools/export_model.py -c test_tipc/configs/rec_r50_fpn_vd_none_srn/rec_r50_fpn_srn.yml -o
infer_quant:False
inference:tools/infer/predict_rec.py --rec_char_dict_path=./ppocr/utils/ic15_dict.txt --rec_image_shape="1,64,256" --rec_algorithm="SRN" --use_space_char=False
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1|6
--use_tensorrt:True|False
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
--save_log_path:./test/output/
--benchmark:True
null:null
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录