Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
27b8a562
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
大约 1 年 前同步成功
通知
1528
Star
32962
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
27b8a562
编写于
5月 25, 2022
作者:
文幕地方
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update doc
上级
7045ab34
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
4 addition
and
3 deletion
+4
-3
applications/轻量级车牌识别.md
applications/轻量级车牌识别.md
+4
-3
未找到文件。
applications/轻量级车牌识别.md
浏览文件 @
27b8a562
...
...
@@ -27,9 +27,10 @@
本项目难点如下:
车牌在图像中的尺度差异大、在车辆上的悬挂位置不固定
车牌图像质量层次不齐: 角度倾斜、图片模糊、光照不足、过曝等问题严重
边缘和端测场景应用对模型大小有限制,推理速度有要求
1.
车牌在图像中的尺度差异大、在车辆上的悬挂位置不固定
2.
车牌图像质量层次不齐: 角度倾斜、图片模糊、光照不足、过曝等问题严重
3.
边缘和端测场景应用对模型大小有限制,推理速度有要求
针对以上问题, 本例选用 PP-OCRv3 这一开源超轻量OCR系统进行车牌识别系统的开发。基于PP-OCRv3模型,在CCPD数据集达到99%的检测和94%的识别精度,模型大小12.8M(2.5M+10.3M)。基于量化对模型体积进行进一步压缩到5.8M(1M+4.8M), 同时推理速度提升25%。
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录