提交 25de5bec 编写于 作者: M MissPenguin

update

上级 36152456
...@@ -90,9 +90,6 @@ private: ...@@ -90,9 +90,6 @@ private:
// post-process // post-process
PostProcessor post_processor_; PostProcessor post_processor_;
cv::Mat GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box);
}; // class CrnnRecognizer }; // class CrnnRecognizer
} // namespace PaddleOCR } // namespace PaddleOCR
...@@ -118,10 +118,10 @@ void DBDetector::Run(cv::Mat &img, ...@@ -118,10 +118,10 @@ void DBDetector::Run(cv::Mat &img,
auto preprocess_end = std::chrono::steady_clock::now(); auto preprocess_end = std::chrono::steady_clock::now();
// Inference. // Inference.
auto inference_start = std::chrono::steady_clock::now();
auto input_names = this->predictor_->GetInputNames(); auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]); auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data()); input_t->CopyFromCpu(input.data());
this->predictor_->Run(); this->predictor_->Run();
...@@ -165,8 +165,8 @@ void DBDetector::Run(cv::Mat &img, ...@@ -165,8 +165,8 @@ void DBDetector::Run(cv::Mat &img,
this->det_db_unclip_ratio_, this->use_polygon_score_); this->det_db_unclip_ratio_, this->use_polygon_score_);
boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg); boxes = post_processor_.FilterTagDetRes(boxes, ratio_h, ratio_w, srcimg);
std::cout << "Detected boxes num: " << boxes.size() << endl;
auto postprocess_end = std::chrono::steady_clock::now(); auto postprocess_end = std::chrono::steady_clock::now();
std::cout << "Detected boxes num: " << boxes.size() << endl;
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start; std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000)); times->push_back(double(preprocess_diff.count() * 1000));
......
...@@ -34,10 +34,10 @@ void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) { ...@@ -34,10 +34,10 @@ void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
auto preprocess_end = std::chrono::steady_clock::now(); auto preprocess_end = std::chrono::steady_clock::now();
// Inference. // Inference.
auto inference_start = std::chrono::steady_clock::now();
auto input_names = this->predictor_->GetInputNames(); auto input_names = this->predictor_->GetInputNames();
auto input_t = this->predictor_->GetInputHandle(input_names[0]); auto input_t = this->predictor_->GetInputHandle(input_names[0]);
input_t->Reshape({1, 3, resize_img.rows, resize_img.cols}); input_t->Reshape({1, 3, resize_img.rows, resize_img.cols});
auto inference_start = std::chrono::steady_clock::now();
input_t->CopyFromCpu(input.data()); input_t->CopyFromCpu(input.data());
this->predictor_->Run(); this->predictor_->Run();
...@@ -77,12 +77,12 @@ void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) { ...@@ -77,12 +77,12 @@ void CRNNRecognizer::Run(cv::Mat &img, std::vector<double> *times) {
} }
last_index = argmax_idx; last_index = argmax_idx;
} }
auto postprocess_end = std::chrono::steady_clock::now();
score /= count; score /= count;
for (int i = 0; i < str_res.size(); i++) { for (int i = 0; i < str_res.size(); i++) {
std::cout << str_res[i]; std::cout << str_res[i];
} }
std::cout << "\tscore: " << score << std::endl; std::cout << "\tscore: " << score << std::endl;
auto postprocess_end = std::chrono::steady_clock::now();
std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start; std::chrono::duration<float> preprocess_diff = preprocess_end - preprocess_start;
times->push_back(double(preprocess_diff.count() * 1000)); times->push_back(double(preprocess_diff.count() * 1000));
...@@ -144,59 +144,4 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) { ...@@ -144,59 +144,4 @@ void CRNNRecognizer::LoadModel(const std::string &model_dir) {
this->predictor_ = CreatePredictor(config); this->predictor_ = CreatePredictor(config);
} }
cv::Mat CRNNRecognizer::GetRotateCropImage(const cv::Mat &srcimage,
std::vector<std::vector<int>> box) {
cv::Mat image;
srcimage.copyTo(image);
std::vector<std::vector<int>> points = box;
int x_collect[4] = {box[0][0], box[1][0], box[2][0], box[3][0]};
int y_collect[4] = {box[0][1], box[1][1], box[2][1], box[3][1]};
int left = int(*std::min_element(x_collect, x_collect + 4));
int right = int(*std::max_element(x_collect, x_collect + 4));
int top = int(*std::min_element(y_collect, y_collect + 4));
int bottom = int(*std::max_element(y_collect, y_collect + 4));
cv::Mat img_crop;
image(cv::Rect(left, top, right - left, bottom - top)).copyTo(img_crop);
for (int i = 0; i < points.size(); i++) {
points[i][0] -= left;
points[i][1] -= top;
}
int img_crop_width = int(sqrt(pow(points[0][0] - points[1][0], 2) +
pow(points[0][1] - points[1][1], 2)));
int img_crop_height = int(sqrt(pow(points[0][0] - points[3][0], 2) +
pow(points[0][1] - points[3][1], 2)));
cv::Point2f pts_std[4];
pts_std[0] = cv::Point2f(0., 0.);
pts_std[1] = cv::Point2f(img_crop_width, 0.);
pts_std[2] = cv::Point2f(img_crop_width, img_crop_height);
pts_std[3] = cv::Point2f(0.f, img_crop_height);
cv::Point2f pointsf[4];
pointsf[0] = cv::Point2f(points[0][0], points[0][1]);
pointsf[1] = cv::Point2f(points[1][0], points[1][1]);
pointsf[2] = cv::Point2f(points[2][0], points[2][1]);
pointsf[3] = cv::Point2f(points[3][0], points[3][1]);
cv::Mat M = cv::getPerspectiveTransform(pointsf, pts_std);
cv::Mat dst_img;
cv::warpPerspective(img_crop, dst_img, M,
cv::Size(img_crop_width, img_crop_height),
cv::BORDER_REPLICATE);
if (float(dst_img.rows) >= float(dst_img.cols) * 1.5) {
cv::Mat srcCopy = cv::Mat(dst_img.rows, dst_img.cols, dst_img.depth());
cv::transpose(dst_img, srcCopy);
cv::flip(srcCopy, srcCopy, 0);
return srcCopy;
} else {
return dst_img;
}
}
} // namespace PaddleOCR } // namespace PaddleOCR
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册