Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleOCR
提交
20f001d3
P
PaddleOCR
项目概览
PaddlePaddle
/
PaddleOCR
大约 1 年 前同步成功
通知
1528
Star
32962
Fork
6643
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
108
列表
看板
标记
里程碑
合并请求
7
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleOCR
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
108
Issue
108
列表
看板
标记
里程碑
合并请求
7
合并请求
7
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
20f001d3
编写于
11月 30, 2021
作者:
文幕地方
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add rec fpgm
上级
7c15d1b7
变更
6
隐藏空白更改
内联
并排
Showing
6 changed file
with
199 addition
and
14 deletion
+199
-14
deploy/slim/prune/export_prune_model.py
deploy/slim/prune/export_prune_model.py
+23
-9
deploy/slim/prune/sensitivity_anal.py
deploy/slim/prune/sensitivity_anal.py
+16
-5
ppocr/modeling/backbones/rec_mobilenet_v3.py
ppocr/modeling/backbones/rec_mobilenet_v3.py
+3
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml
...pocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml
+102
-0
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/train_infer_python.txt
...figs/ch_ppocr_mobile_v2.0_rec_FPGM/train_infer_python.txt
+51
-0
test_tipc/prepare.sh
test_tipc/prepare.sh
+4
-0
未找到文件。
deploy/slim/prune/export_prune_model.py
浏览文件 @
20f001d3
...
...
@@ -52,12 +52,17 @@ def main(config, device, logger, vdl_writer):
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
])
logger
.
info
(
f
"FLOPs before pruning:
{
flops
}
"
)
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
input_shape
=
[
1
,
3
,
640
,
640
]
elif
config
[
'Architecture'
][
'model_type'
]
==
'rec'
:
input_shape
=
[
1
,
3
,
32
,
320
]
flops
=
paddle
.
flops
(
model
,
input_shape
)
logger
.
info
(
"FLOPs before pruning: {}"
.
format
(
flops
))
from
paddleslim.dygraph
import
FPGMFilterPruner
model
.
train
()
pruner
=
FPGMFilterPruner
(
model
,
[
1
,
3
,
640
,
640
]
)
pruner
=
FPGMFilterPruner
(
model
,
input_shape
)
# build metric
eval_class
=
build_metric
(
config
[
'Metric'
])
...
...
@@ -65,8 +70,13 @@ def main(config, device, logger, vdl_writer):
def
eval_fn
():
metric
=
program
.
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
)
logger
.
info
(
f
"metric['hmean']:
{
metric
[
'hmean'
]
}
"
)
return
metric
[
'hmean'
]
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
main_indicator
=
'hmean'
else
:
main_indicator
=
'acc'
logger
.
info
(
"metric[{}]: {}"
.
format
(
main_indicator
,
metric
[
main_indicator
]))
return
metric
[
main_indicator
]
params_sensitive
=
pruner
.
sensitive
(
eval_func
=
eval_fn
,
...
...
@@ -81,18 +91,22 @@ def main(config, device, logger, vdl_writer):
# calculate pruned params's ratio
params_sensitive
=
pruner
.
_get_ratios_by_loss
(
params_sensitive
,
loss
=
0.02
)
for
key
in
params_sensitive
.
keys
():
logger
.
info
(
f
"
{
key
}
,
{
params_sensitive
[
key
]
}
"
)
logger
.
info
(
"{}, {}"
.
format
(
key
,
params_sensitive
[
key
])
)
plan
=
pruner
.
prune_vars
(
params_sensitive
,
[
0
])
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
]
)
logger
.
info
(
f
"FLOPs after pruning:
{
flops
}
"
)
flops
=
paddle
.
flops
(
model
,
input_shape
)
logger
.
info
(
"FLOPs after pruning: {}"
.
format
(
flops
)
)
# load pretrain model
load_model
(
config
,
model
)
metric
=
program
.
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
)
logger
.
info
(
f
"metric['hmean']:
{
metric
[
'hmean'
]
}
"
)
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
main_indicator
=
'hmean'
else
:
main_indicator
=
'acc'
logger
.
info
(
"metric['']: {}"
.
format
(
main_indicator
,
metric
[
main_indicator
]))
# start export model
from
paddle.jit
import
to_static
...
...
deploy/slim/prune/sensitivity_anal.py
浏览文件 @
20f001d3
...
...
@@ -73,13 +73,18 @@ def main(config, device, logger, vdl_writer):
char_num
=
len
(
getattr
(
post_process_class
,
'character'
))
config
[
'Architecture'
][
"Head"
][
'out_channels'
]
=
char_num
model
=
build_model
(
config
[
'Architecture'
])
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
input_shape
=
[
1
,
3
,
640
,
640
]
elif
config
[
'Architecture'
][
'model_type'
]
==
'rec'
:
input_shape
=
[
1
,
3
,
32
,
320
]
flops
=
paddle
.
flops
(
model
,
input_shape
)
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
])
logger
.
info
(
"FLOPs before pruning: {}"
.
format
(
flops
))
from
paddleslim.dygraph
import
FPGMFilterPruner
model
.
train
()
pruner
=
FPGMFilterPruner
(
model
,
[
1
,
3
,
640
,
640
])
pruner
=
FPGMFilterPruner
(
model
,
input_shape
)
# build loss
loss_class
=
build_loss
(
config
[
'Loss'
])
...
...
@@ -107,8 +112,14 @@ def main(config, device, logger, vdl_writer):
def
eval_fn
():
metric
=
program
.
eval
(
model
,
valid_dataloader
,
post_process_class
,
eval_class
,
False
)
logger
.
info
(
"metric['hmean']: {}"
.
format
(
metric
[
'hmean'
]))
return
metric
[
'hmean'
]
if
config
[
'Architecture'
][
'model_type'
]
==
'det'
:
main_indicator
=
'hmean'
else
:
main_indicator
=
'acc'
logger
.
info
(
"metric[{}]: {}"
.
format
(
main_indicator
,
metric
[
main_indicator
]))
return
metric
[
main_indicator
]
run_sensitive_analysis
=
False
"""
...
...
@@ -149,7 +160,7 @@ def main(config, device, logger, vdl_writer):
plan
=
pruner
.
prune_vars
(
params_sensitive
,
[
0
])
flops
=
paddle
.
flops
(
model
,
[
1
,
3
,
640
,
640
]
)
flops
=
paddle
.
flops
(
model
,
input_shape
)
logger
.
info
(
"FLOPs after pruning: {}"
.
format
(
flops
))
# start train
...
...
ppocr/modeling/backbones/rec_mobilenet_v3.py
浏览文件 @
20f001d3
...
...
@@ -26,8 +26,10 @@ class MobileNetV3(nn.Layer):
scale
=
0.5
,
large_stride
=
None
,
small_stride
=
None
,
disable_se
=
False
,
**
kwargs
):
super
(
MobileNetV3
,
self
).
__init__
()
self
.
disable_se
=
disable_se
if
small_stride
is
None
:
small_stride
=
[
2
,
2
,
2
,
2
]
if
large_stride
is
None
:
...
...
@@ -101,6 +103,7 @@ class MobileNetV3(nn.Layer):
block_list
=
[]
inplanes
=
make_divisible
(
inplanes
*
scale
)
for
(
k
,
exp
,
c
,
se
,
nl
,
s
)
in
cfg
:
se
=
se
and
not
self
.
disable_se
block_list
.
append
(
ResidualUnit
(
in_channels
=
inplanes
,
...
...
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml
0 → 100644
浏览文件 @
20f001d3
Global
:
use_gpu
:
true
epoch_num
:
500
log_smooth_window
:
20
print_batch_step
:
10
save_model_dir
:
./output/rec_chinese_lite_v2.0
save_epoch_step
:
3
# evaluation is run every 5000 iterations after the 4000th iteration
eval_batch_step
:
[
0
,
2000
]
cal_metric_during_train
:
True
pretrained_model
:
checkpoints
:
save_inference_dir
:
use_visualdl
:
False
infer_img
:
doc/imgs_words/ch/word_1.jpg
# for data or label process
character_dict_path
:
ppocr/utils/ppocr_keys_v1.txt
max_text_length
:
25
infer_mode
:
False
use_space_char
:
True
save_res_path
:
./output/rec/predicts_chinese_lite_v2.0.txt
Optimizer
:
name
:
Adam
beta1
:
0.9
beta2
:
0.999
lr
:
name
:
Cosine
learning_rate
:
0.001
regularizer
:
name
:
'
L2'
factor
:
0.00001
Architecture
:
model_type
:
rec
algorithm
:
CRNN
Transform
:
Backbone
:
name
:
MobileNetV3
scale
:
0.5
model_name
:
small
small_stride
:
[
1
,
2
,
2
,
2
]
disable_se
:
True
Neck
:
name
:
SequenceEncoder
encoder_type
:
rnn
hidden_size
:
48
Head
:
name
:
CTCHead
fc_decay
:
0.00001
Loss
:
name
:
CTCLoss
PostProcess
:
name
:
CTCLabelDecode
Metric
:
name
:
RecMetric
main_indicator
:
acc
Train
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_train.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
RecAug
:
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
True
batch_size_per_card
:
256
drop_last
:
True
num_workers
:
8
Eval
:
dataset
:
name
:
SimpleDataSet
data_dir
:
train_data/ic15_data
label_file_list
:
[
"
train_data/ic15_data/rec_gt_test.txt"
]
transforms
:
-
DecodeImage
:
# load image
img_mode
:
BGR
channel_first
:
False
-
CTCLabelEncode
:
# Class handling label
-
RecResizeImg
:
image_shape
:
[
3
,
32
,
320
]
-
KeepKeys
:
keep_keys
:
[
'
image'
,
'
label'
,
'
length'
]
# dataloader will return list in this order
loader
:
shuffle
:
False
drop_last
:
False
batch_size_per_card
:
256
num_workers
:
8
test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/train_infer_python.txt
0 → 100644
浏览文件 @
20f001d3
===========================train_params===========================
model_name:ch_ppocr_mobile_v2.0_rec_FPGM
python:python3.7
gpu_list:0
Global.use_gpu:True|True
Global.auto_cast:null
Global.epoch_num:lite_train_lite_infer=1|whole_train_whole_infer=300
Global.save_model_dir:./output/
Train.loader.batch_size_per_card:lite_train_lite_infer=128|whole_train_whole_infer=128
Global.pretrained_model:null
train_model_name:latest
train_infer_img_dir:./train_data/ic15_data/test/word_1.png
null:null
##
trainer:fpgm_train
norm_train:null
pact_train:null
fpgm_train:deploy/slim/prune/sensitivity_anal.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml -o Global.pretrained_model=./pretrain_models/ch_ppocr_mobile_v2.0_rec_train/best_accuracy
distill_train:null
null:null
null:null
##
===========================eval_params===========================
eval:null
null:null
##
===========================infer_params===========================
Global.save_inference_dir:./output/
Global.pretrained_model:
norm_export:null
quant_export:null
fpgm_export:deploy/slim/prune/export_prune_model.py -c test_tipc/configs/ch_ppocr_mobile_v2.0_rec_FPGM/rec_chinese_lite_train_v2.0.yml -o
distill_export:null
export1:null
export2:null
inference_dir:null
train_model:null
infer_export:null
infer_quant:False
inference:tools/infer/predict_rec.py
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|int8
--rec_model_dir:
--image_dir:./inference/rec_inference
null:null
--benchmark:True
null:null
\ No newline at end of file
test_tipc/prepare.sh
浏览文件 @
20f001d3
...
...
@@ -61,6 +61,10 @@ if [ ${MODE} = "lite_train_lite_infer" ];then
wget
-nc
-P
./inference/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/en/det_r50_vd_db_v2.0_train.tar
--no-check-certificate
cd
./inference/
&&
tar
xf det_r50_vd_db_v2.0_train.tar
&&
cd
../
fi
if
[
${
model_name
}
==
"ch_ppocr_mobile_v2.0_rec_FPGM"
]
;
then
wget
-nc
-P
./pretrain_models/ https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_train.tar
--no-check-certificate
cd
./pretrain_models/
&&
tar
xf ch_ppocr_mobile_v2.0_rec_train.tar
&&
cd
../
fi
elif
[
${
MODE
}
=
"whole_train_whole_infer"
]
;
then
wget
-nc
-P
./pretrain_models/ https://paddle-imagenet-models-name.bj.bcebos.com/dygraph/MobileNetV3_large_x0_5_pretrained.pdparams
--no-check-certificate
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录