提交 1d04fa26 编写于 作者: M MissPenguin

rename test_*sh files

上级 05a9bacd
# C++预测功能测试 # C++预测功能测试
C++预测功能测试的主程序为`test_cpp.sh`,可以测试基于C++预测库的模型推理功能。 C++预测功能测试的主程序为`test_inference_cpp.sh`,可以测试基于C++预测库的模型推理功能。
## 1. 测试结论汇总 ## 1. 测试结论汇总
...@@ -15,15 +15,15 @@ C++预测功能测试的主程序为`test_cpp.sh`,可以测试基于C++预测 ...@@ -15,15 +15,15 @@ C++预测功能测试的主程序为`test_cpp.sh`,可以测试基于C++预测
## 2. 测试流程 ## 2. 测试流程
### 2.1 功能测试 ### 2.1 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_cpp.sh`进行测试,最终在```tests/output```目录下生成`cpp_infer_*.log`后缀的日志文件。 先运行`prepare.sh`准备数据和模型,然后运行`test_inference_cpp.sh`进行测试,最终在```tests/output```目录下生成`cpp_infer_*.log`后缀的日志文件。
```shell ```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt "cpp_infer" bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt "cpp_infer"
# 用法1: # 用法1:
bash tests/test_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt bash tests/test_inference_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 # 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash tests/test_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt '1' bash tests/test_inference_cpp.sh ./tests/configs/ppocr_det_mobile_params.txt '1'
``` ```
......
# Python功能测试 # 基础训练预测功能测试
Python功能测试的主程序为`test_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 基础训练预测功能测试的主程序为`test_train_inference_python.sh`,可以测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
## 1. 测试结论汇总 ## 1. 测试结论汇总
...@@ -45,42 +45,42 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的 ...@@ -45,42 +45,42 @@ Python功能测试的主程序为`test_python.sh`,可以测试基于Python的
### 2.2 功能测试 ### 2.2 功能测试
先运行`prepare.sh`准备数据和模型,然后运行`test_python.sh`进行测试,最终在```tests/output```目录下生成`python_infer_*.log`格式的日志文件。 先运行`prepare.sh`准备数据和模型,然后运行`test_train_inference_python.sh`进行测试,最终在```tests/output```目录下生成`python_infer_*.log`格式的日志文件。
test_python.sh包含四种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是: `test_train_inference_python.sh`包含5种运行模式,每种模式的运行数据不同,分别用于测试速度和精度,分别是:
- 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度; - 模式1:lite_train_infer,使用少量数据训练,用于快速验证训练到预测的走通流程,不验证精度和速度;
```shell ```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer' bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer'
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer' bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'lite_train_infer'
``` ```
- 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理; - 模式2:whole_infer,使用少量数据训练,一定量数据预测,用于验证训练后的模型执行预测,预测速度是否合理;
```shell ```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer' bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer'
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer' bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_infer'
``` ```
- 模式3:infer 不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度; - 模式3:infer不训练,全量数据预测,走通开源模型评估、动转静,检查inference model预测时间和精度;
```shell ```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer'
# 用法1: # 用法1:
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer'
# 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号 # 用法2: 指定GPU卡预测,第三个传入参数为GPU卡号
bash tests/test_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' '1' bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'infer' '1'
``` ```
- 模式4:whole_train_infer , CE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度; - 模式4:whole_train_inferCE: 全量数据训练,全量数据预测,验证模型训练精度,预测精度,预测速度;
```shell ```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer' bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer'
bash tests/test.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer' bash tests/test_train_inference_python.sh ./tests/configs/ppocr_det_mobile_params.txt 'whole_train_infer'
``` ```
- 模式5:klquant_infer , 测试离线量化; - 模式5:klquant_infer测试离线量化;
```shell ```shell
bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'klquant_infer' bash tests/prepare.sh ./tests/configs/ppocr_det_mobile_params.txt 'klquant_infer'
bash tests/test_python.sh tests/configs/ppocr_det_mobile_params.txt 'klquant_infer' bash tests/test_train_inference_python.sh tests/configs/ppocr_det_mobile_params.txt 'klquant_infer'
``` ```
......
...@@ -72,13 +72,13 @@ tests/ ...@@ -72,13 +72,13 @@ tests/
├── cpp_ppocr_det_mobile_results_fp32.txt # 预存的mobile版ppocr检测模型c++预测的fp32精度的结果 ├── cpp_ppocr_det_mobile_results_fp32.txt # 预存的mobile版ppocr检测模型c++预测的fp32精度的结果
├── cpp_ppocr_det_mobile_results_fp16.txt # 预存的mobile版ppocr检测模型c++预测的fp16精度的结果 ├── cpp_ppocr_det_mobile_results_fp16.txt # 预存的mobile版ppocr检测模型c++预测的fp16精度的结果
├── ... ├── ...
├── prepare.sh # 完成test_*.sh运行所需要的数据和模型下载 ├── prepare.sh # 完成test_*.sh运行所需要的数据和模型下载
├── test_python.sh # 测试python训练预测的主程序 ├── test_train_inference_python.sh # 测试python训练预测的主程序
├── test_cpp.sh # 测试c++预测的主程序 ├── test_inference_cpp.sh # 测试c++预测的主程序
├── test_serving.sh # 测试serving部署预测的主程序 ├── test_serving.sh # 测试serving部署预测的主程序
├── test_lite.sh # 测试lite部署预测的主程序 ├── test_lite.sh # 测试lite部署预测的主程序
├── compare_results.py # 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内 ├── compare_results.py # 用于对比log中的预测结果与results中的预存结果精度误差是否在限定范围内
└── readme.md # 使用文档 └── readme.md # 使用文档
``` ```
### 测试流程 ### 测试流程
...@@ -92,13 +92,13 @@ tests/ ...@@ -92,13 +92,13 @@ tests/
3.`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。 3.`compare_results.py`对比log中的预测结果和预存在results目录下的结果,判断预测精度是否符合预期(在误差范围内)。
其中,有4个测试主程序,功能如下: 其中,有4个测试主程序,功能如下:
- `test_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。 - `test_train_inference_python.sh`:测试基于Python的模型训练、评估、推理等基本功能,包括裁剪、量化、蒸馏。
- `test_cpp.sh`:测试基于C++的模型推理。 - `test_inference_cpp.sh`:测试基于C++的模型推理。
- `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。 - `test_serving.sh`:测试基于Paddle Serving的服务化部署功能。
- `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。 - `test_lite.sh`:测试基于Paddle-Lite的端侧预测部署功能。
各功能测试中涉及GPU/CPU、mkldnn、Tensorrt等多种参数配置,点击相应链接了解更多细节和使用教程: 各功能测试中涉及GPU/CPU、mkldnn、Tensorrt等多种参数配置,点击相应链接了解更多细节和使用教程:
[test_python使用](docs/test_python.md) [test_train_inference_python 使用](docs/test_train_inference_python.md)
[test_cpp使用](docs/test_cpp.md) [test_inference_cpp 使用](docs/test_inference_cpp.md)
[test_serving使用](docs/test_serving.md) [test_serving 使用](docs/test_serving.md)
[test_lite使用](docs/test_lite.md) [test_lite 使用](docs/test_lite.md)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册