提交 18aed01d 编写于 作者: qq_25193841's avatar qq_25193841

Merge remote-tracking branch 'origin/dygraph' into dygraph

......@@ -206,6 +206,10 @@ endif()
set(DEPS ${DEPS} ${OpenCV_LIBS})
include(ExternalProject)
include(external-cmake/auto-log.cmake)
include_directories(${CMAKE_CURRENT_BINARY_DIR}/autolog/src/extern_Autolog/auto_log)
AUX_SOURCE_DIRECTORY(./src SRCS)
add_executable(${DEMO_NAME} ${SRCS})
......
find_package(Git REQUIRED)
message("${CMAKE_BUILD_TYPE}")
set(AUTOLOG_REPOSITORY https://github.com/LDOUBLEV/AutoLog.git)
SET(AUTOLOG_INSTALL_DIR ${CMAKE_CURRENT_BINARY_DIR}/install/Autolog)
ExternalProject_Add(
extern_Autolog
PREFIX autolog
GIT_REPOSITORY ${AUTOLOG_REPOSITORY}
GIT_TAG main
DOWNLOAD_NO_EXTRACT True
INSTALL_COMMAND cmake -E echo "Skipping install step."
)
......@@ -39,8 +39,8 @@
DEFINE_bool(use_gpu, false, "Infering with GPU or CPU.");
DEFINE_int32(gpu_id, 0, "Device id of GPU to execute.");
DEFINE_int32(gpu_mem, 4000, "GPU id when infering with GPU.");
DEFINE_int32(cpu_math_library_num_threads, 10, "Num of threads with CPU.");
DEFINE_bool(use_mkldnn, false, "Whether use mkldnn with CPU.");
DEFINE_int32(cpu_threads, 10, "Num of threads with CPU.");
DEFINE_bool(enable_mkldnn, false, "Whether use mkldnn with CPU.");
DEFINE_bool(use_tensorrt, false, "Whether use tensorrt.");
DEFINE_string(precision, "fp32", "Precision be one of fp32/fp16/int8");
DEFINE_bool(benchmark, true, "Whether use benchmark.");
......@@ -60,6 +60,7 @@ DEFINE_string(cls_model_dir, "", "Path of cls inference model.");
DEFINE_double(cls_thresh, 0.9, "Threshold of cls_thresh.");
// recognition related
DEFINE_string(rec_model_dir, "", "Path of rec inference model.");
DEFINE_int32(rec_batch_num, 1, "rec_batch_num.");
DEFINE_string(char_list_file, "../../ppocr/utils/ppocr_keys_v1.txt", "Path of dictionary.");
......@@ -68,34 +69,6 @@ using namespace cv;
using namespace PaddleOCR;
void PrintBenchmarkLog(std::string model_name,
int batch_size,
std::string input_shape,
std::vector<double> time_info,
int img_num){
LOG(INFO) << "----------------------- Config info -----------------------";
LOG(INFO) << "runtime_device: " << (FLAGS_use_gpu ? "gpu" : "cpu");
LOG(INFO) << "ir_optim: " << "True";
LOG(INFO) << "enable_memory_optim: " << "True";
LOG(INFO) << "enable_tensorrt: " << FLAGS_use_tensorrt;
LOG(INFO) << "enable_mkldnn: " << (FLAGS_use_mkldnn ? "True" : "False");
LOG(INFO) << "cpu_math_library_num_threads: " << FLAGS_cpu_math_library_num_threads;
LOG(INFO) << "----------------------- Data info -----------------------";
LOG(INFO) << "batch_size: " << batch_size;
LOG(INFO) << "input_shape: " << input_shape;
LOG(INFO) << "data_num: " << img_num;
LOG(INFO) << "----------------------- Model info -----------------------";
LOG(INFO) << "model_name: " << model_name;
LOG(INFO) << "precision: " << FLAGS_precision;
LOG(INFO) << "----------------------- Perf info ------------------------";
LOG(INFO) << "Total time spent(ms): "
<< std::accumulate(time_info.begin(), time_info.end(), 0);
LOG(INFO) << "preprocess_time(ms): " << time_info[0] / img_num
<< ", inference_time(ms): " << time_info[1] / img_num
<< ", postprocess_time(ms): " << time_info[2] / img_num;
}
static bool PathExists(const std::string& path){
#ifdef _WIN32
struct _stat buffer;
......@@ -110,8 +83,8 @@ static bool PathExists(const std::string& path){
int main_det(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_precision);
......@@ -135,7 +108,17 @@ int main_det(std::vector<cv::String> cv_all_img_names) {
}
if (FLAGS_benchmark) {
PrintBenchmarkLog("det", 1, "dynamic", time_info, cv_all_img_names.size());
AutoLogger autolog("ocr_det",
FLAGS_use_gpu,
FLAGS_use_tensorrt,
FLAGS_enable_mkldnn,
FLAGS_cpu_threads,
1,
"dynamic",
FLAGS_precision,
time_info,
cv_all_img_names.size());
autolog.report();
}
return 0;
}
......@@ -144,8 +127,8 @@ int main_det(std::vector<cv::String> cv_all_img_names) {
int main_rec(std::vector<cv::String> cv_all_img_names) {
std::vector<double> time_info = {0, 0, 0};
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_char_list_file,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_char_list_file,
FLAGS_use_tensorrt, FLAGS_precision);
for (int i = 0; i < cv_all_img_names.size(); ++i) {
......@@ -165,18 +148,14 @@ int main_rec(std::vector<cv::String> cv_all_img_names) {
time_info[2] += rec_times[2];
}
if (FLAGS_benchmark) {
PrintBenchmarkLog("rec", 1, "dynamic", time_info, cv_all_img_names.size());
}
return 0;
}
int main_system(std::vector<cv::String> cv_all_img_names) {
DBDetector det(FLAGS_det_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_max_side_len, FLAGS_det_db_thresh,
FLAGS_det_db_box_thresh, FLAGS_det_db_unclip_ratio,
FLAGS_use_polygon_score, FLAGS_visualize,
FLAGS_use_tensorrt, FLAGS_precision);
......@@ -184,14 +163,14 @@ int main_system(std::vector<cv::String> cv_all_img_names) {
Classifier *cls = nullptr;
if (FLAGS_use_angle_cls) {
cls = new Classifier(FLAGS_cls_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_cls_thresh,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_cls_thresh,
FLAGS_use_tensorrt, FLAGS_precision);
}
CRNNRecognizer rec(FLAGS_rec_model_dir, FLAGS_use_gpu, FLAGS_gpu_id,
FLAGS_gpu_mem, FLAGS_cpu_math_library_num_threads,
FLAGS_use_mkldnn, FLAGS_char_list_file,
FLAGS_gpu_mem, FLAGS_cpu_threads,
FLAGS_enable_mkldnn, FLAGS_char_list_file,
FLAGS_use_tensorrt, FLAGS_precision);
auto start = std::chrono::system_clock::now();
......
......@@ -25,6 +25,6 @@ class ClsLoss(nn.Layer):
self.loss_func = nn.CrossEntropyLoss(reduction='mean')
def forward(self, predicts, batch):
label = batch[1]
label = batch[1].astype("int64")
loss = self.loss_func(input=predicts, label=label)
return {'loss': loss}
......@@ -49,4 +49,19 @@ inference:tools/infer/predict_det.py
--save_log_path:null
--benchmark:True
null:null
===========================cpp_infer_params===========================
use_opencv:True
infer_model:./inference/ch_ppocr_mobile_v2.0_det_infer/
infer_quant:False
inference:./deploy/cpp_infer/build/ppocr det
--use_gpu:True|False
--enable_mkldnn:True|False
--cpu_threads:1|6
--rec_batch_num:1
--use_tensorrt:False|True
--precision:fp32|fp16
--det_model_dir:
--image_dir:./inference/ch_det_data_50/all-sum-510/
--save_log_path:null
--benchmark:True
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
MODE=$2
dataline=$(cat ${FILENAME})
......@@ -58,7 +58,7 @@ elif [ ${MODE} = "whole_infer" ];then
cd ./train_data/ && tar xf icdar2015_infer.tar && tar xf ic15_data.tar
ln -s ./icdar2015_infer ./icdar2015
cd ../
else
elif [ ${MODE} = "infer" ] || [ ${MODE} = "cpp_infer" ];then
if [ ${model_name} = "ocr_det" ]; then
eval_model_name="ch_ppocr_mobile_v2.0_det_infer"
rm -rf ./train_data/icdar2015
......@@ -74,3 +74,72 @@ else
fi
fi
if [ ${MODE} = "cpp_infer" ];then
cd deploy/cpp_infer
use_opencv=$(func_parser_value "${lines[52]}")
if [ ${use_opencv} = "True" ]; then
echo "################### build opencv ###################"
rm -rf 3.4.7.tar.gz opencv-3.4.7/
wget https://github.com/opencv/opencv/archive/3.4.7.tar.gz
tar -xf 3.4.7.tar.gz
cd opencv-3.4.7/
install_path=$(pwd)/opencv-3.4.7/opencv3
rm -rf build
mkdir build
cd build
cmake .. \
-DCMAKE_INSTALL_PREFIX=${install_path} \
-DCMAKE_BUILD_TYPE=Release \
-DBUILD_SHARED_LIBS=OFF \
-DWITH_IPP=OFF \
-DBUILD_IPP_IW=OFF \
-DWITH_LAPACK=OFF \
-DWITH_EIGEN=OFF \
-DCMAKE_INSTALL_LIBDIR=lib64 \
-DWITH_ZLIB=ON \
-DBUILD_ZLIB=ON \
-DWITH_JPEG=ON \
-DBUILD_JPEG=ON \
-DWITH_PNG=ON \
-DBUILD_PNG=ON \
-DWITH_TIFF=ON \
-DBUILD_TIFF=ON
make -j
make install
cd ../
echo "################### build opencv finished ###################"
fi
echo "################### build PaddleOCR demo ####################"
if [ ${use_opencv} = "True" ]; then
OPENCV_DIR=$(pwd)/opencv-3.4.7/opencv3/
else
OPENCV_DIR=''
fi
LIB_DIR=$(pwd)/Paddle/build/paddle_inference_install_dir/
CUDA_LIB_DIR=$(dirname `find /usr -name libcudart.so`)
CUDNN_LIB_DIR=$(dirname `find /usr -name libcudnn.so`)
BUILD_DIR=build
rm -rf ${BUILD_DIR}
mkdir ${BUILD_DIR}
cd ${BUILD_DIR}
cmake .. \
-DPADDLE_LIB=${LIB_DIR} \
-DWITH_MKL=ON \
-DWITH_GPU=OFF \
-DWITH_STATIC_LIB=OFF \
-DWITH_TENSORRT=OFF \
-DOPENCV_DIR=${OPENCV_DIR} \
-DCUDNN_LIB=${CUDNN_LIB_DIR} \
-DCUDA_LIB=${CUDA_LIB_DIR} \
-DTENSORRT_DIR=${TENSORRT_DIR} \
make -j
echo "################### build PaddleOCR demo finished ###################"
fi
\ No newline at end of file
#!/bin/bash
FILENAME=$1
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer']
# MODE be one of ['lite_train_infer' 'whole_infer' 'whole_train_infer', 'infer', 'cpp_infer']
MODE=$2
dataline=$(cat ${FILENAME})
......@@ -145,6 +145,33 @@ benchmark_value=$(func_parser_value "${lines[49]}")
infer_key1=$(func_parser_key "${lines[50]}")
infer_value1=$(func_parser_value "${lines[50]}")
if [ ${MODE} = "cpp_infer" ]; then
# parser cpp inference model
cpp_infer_model_dir_list=$(func_parser_value "${lines[53]}")
cpp_infer_is_quant=$(func_parser_value "${lines[54]}")
# parser cpp inference
inference_cmd=$(func_parser_value "${lines[55]}")
cpp_use_gpu_key=$(func_parser_key "${lines[56]}")
cpp_use_gpu_list=$(func_parser_value "${lines[56]}")
cpp_use_mkldnn_key=$(func_parser_key "${lines[57]}")
cpp_use_mkldnn_list=$(func_parser_value "${lines[57]}")
cpp_cpu_threads_key=$(func_parser_key "${lines[58]}")
cpp_cpu_threads_list=$(func_parser_value "${lines[58]}")
cpp_batch_size_key=$(func_parser_key "${lines[59]}")
cpp_batch_size_list=$(func_parser_value "${lines[59]}")
cpp_use_trt_key=$(func_parser_key "${lines[60]}")
cpp_use_trt_list=$(func_parser_value "${lines[60]}")
cpp_precision_key=$(func_parser_key "${lines[61]}")
cpp_precision_list=$(func_parser_value "${lines[61]}")
cpp_infer_model_key=$(func_parser_key "${lines[62]}")
cpp_image_dir_key=$(func_parser_key "${lines[63]}")
cpp_infer_img_dir=$(func_parser_value "${lines[63]}")
cpp_save_log_key=$(func_parser_key "${lines[64]}")
cpp_benchmark_key=$(func_parser_key "${lines[65]}")
cpp_benchmark_value=$(func_parser_value "${lines[65]}")
fi
LOG_PATH="./tests/output"
mkdir -p ${LOG_PATH}
status_log="${LOG_PATH}/results.log"
......@@ -218,6 +245,71 @@ function func_inference(){
done
}
function func_cpp_inference(){
IFS='|'
_script=$1
_model_dir=$2
_log_path=$3
_img_dir=$4
_flag_quant=$5
# inference
for use_gpu in ${cpp_use_gpu_list[*]}; do
if [ ${use_gpu} = "False" ] || [ ${use_gpu} = "cpu" ]; then
for use_mkldnn in ${cpp_use_mkldnn_list[*]}; do
if [ ${use_mkldnn} = "False" ] && [ ${_flag_quant} = "True" ]; then
continue
fi
for threads in ${cpp_cpu_threads_list[*]}; do
for batch_size in ${cpp_batch_size_list[*]}; do
_save_log_path="${_log_path}/cpp_infer_cpu_usemkldnn_${use_mkldnn}_threads_${threads}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
set_cpu_threads=$(func_set_params "${cpp_cpu_threads_key}" "${threads}")
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${cpp_use_mkldnn_key}=${use_mkldnn} ${set_cpu_threads} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
elif [ ${use_gpu} = "True" ] || [ ${use_gpu} = "gpu" ]; then
for use_trt in ${cpp_use_trt_list[*]}; do
for precision in ${cpp_precision_list[*]}; do
if [[ ${_flag_quant} = "False" ]] && [[ ${precision} =~ "int8" ]]; then
continue
fi
if [[ ${precision} =~ "fp16" || ${precision} =~ "int8" ]] && [ ${use_trt} = "False" ]; then
continue
fi
if [[ ${use_trt} = "False" || ${precision} =~ "int8" ]] && [ ${_flag_quant} = "True" ]; then
continue
fi
for batch_size in ${cpp_batch_size_list[*]}; do
_save_log_path="${_log_path}/cpp_infer_gpu_usetrt_${use_trt}_precision_${precision}_batchsize_${batch_size}.log"
set_infer_data=$(func_set_params "${cpp_image_dir_key}" "${_img_dir}")
set_benchmark=$(func_set_params "${cpp_benchmark_key}" "${cpp_benchmark_value}")
set_batchsize=$(func_set_params "${cpp_batch_size_key}" "${batch_size}")
set_tensorrt=$(func_set_params "${cpp_use_trt_key}" "${use_trt}")
set_precision=$(func_set_params "${cpp_precision_key}" "${precision}")
set_model_dir=$(func_set_params "${cpp_infer_model_key}" "${_model_dir}")
command="${_script} ${cpp_use_gpu_key}=${use_gpu} ${set_tensorrt} ${set_precision} ${set_model_dir} ${set_batchsize} ${set_infer_data} ${set_benchmark} > ${_save_log_path} 2>&1 "
eval $command
last_status=${PIPESTATUS[0]}
eval "cat ${_save_log_path}"
status_check $last_status "${command}" "${status_log}"
done
done
done
else
echo "Does not support hardware other than CPU and GPU Currently!"
fi
done
}
if [ ${MODE} = "infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
......@@ -252,6 +344,25 @@ if [ ${MODE} = "infer" ]; then
Count=$(($Count + 1))
done
elif [ ${MODE} = "cpp_infer" ]; then
GPUID=$3
if [ ${#GPUID} -le 0 ];then
env=" "
else
env="export CUDA_VISIBLE_DEVICES=${GPUID}"
fi
# set CUDA_VISIBLE_DEVICES
eval $env
export Count=0
IFS="|"
infer_quant_flag=(${cpp_infer_is_quant})
for infer_model in ${cpp_infer_model_dir_list[*]}; do
#run inference
is_quant=${infer_quant_flag[Count]}
func_cpp_inference "${inference_cmd}" "${infer_model}" "${LOG_PATH}" "${cpp_infer_img_dir}" ${is_quant}
Count=$(($Count + 1))
done
else
IFS="|"
export Count=0
......
......@@ -278,7 +278,7 @@ def main(args):
if args.warmup:
img = np.random.uniform(0, 255, [32, 320, 3]).astype(np.uint8)
for i in range(2):
res = text_recognizer([img])
res = text_recognizer([img] * int(args.rec_batch_num))
for image_file in image_file_list:
img, flag = check_and_read_gif(image_file)
......
......@@ -159,6 +159,11 @@ def create_predictor(args, mode, logger):
precision = inference.PrecisionType.Float32
if args.use_gpu:
gpu_id = get_infer_gpuid()
if gpu_id is None:
raise ValueError(
"Not found GPU in current device. Please check your device or set args.use_gpu as False"
)
config.enable_use_gpu(args.gpu_mem, 0)
if args.use_tensorrt:
config.enable_tensorrt_engine(
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册